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PREFACE

The first edition of the Elements was an abridgment of
the author’s Analytic Geometry, second edition. The present
book has been prepared, not by revising the first editién)
but by abridging the third (1938) edition of the longer
book. It is an abridgment in the accurate seng.e}‘.not a
condensation — that is, brevity has been obtasned not
by skimping explanations or leaving out workh}i examples,
but by omitting bodily various topics {)t less vital im-
portance, D

The hook differs from its pae\ggcgﬁoh?bsr follows,

Articles 28-29 and 44, on linear Aod qua&rgﬁcpﬁmctions,
are new. The focal-distance.efinition of the central
conics is introduced early (§§46, 52). The chapter on
properties of the conics is considerably abbreviated. Other-
wise the treatment of fitst- and second-degree loci is not
greatly changed. J

Chapter X, discﬁésing rather thoroughly the graphs of
rational algebraie’ functions, is new. This is followed by
the chapter(on” polar codrdinates. The section devoted
to plane@&;metry concludes with a short chapter on
parmqe}i’ié representation.

The ‘treatment of solid geometry has not been greatly
cHanged, except that more effective arrangement in the

Searly stages should result in some saving of time in the
classroom.

The drill exercises have been almost entirely worked over.
A number of theorems that might appear in the text of a
longer book have been incorporated in the exercises, to be

v
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vi PREFACE

developed or not as the teacher prefers, but available for
reference in any case. See, for instance, Ex. 24, p. 58,
or Ex. 11, p. 99.

Inevitably, some instructors will fail to find a presenta-
tion of certain topics that they would like to teach. For
example, within the space allotted it was impossible to.
incorporate a chapter on curve-fitting. It is hoped that
such instructors may find the author’s longer book s@;@i
to their purpose.

CLYDE E«IDVE
AnN ArBORr, MICHIGAN >
April, 1940 &
pri . \ \
\\*
AN

%
. % 4
www. dbraulibrary.org.in HY
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PLANE ANALYTIC GEOMETRY

CHAPTER 1

N

2\,

CARTESIAN COORDINATES O

1. Directed line segments. When a line segment is
traced in a definite sense frem one endpoint tomf.hé other,
the segment is said to be direcled. If the terninal points
are A, B, we speak of the segment AB or the'segment BA
according as the sense is from A to B einfrom B to A.

If one sense is chosen as pgﬁwrﬂgﬂ‘ RS Posite

sense is negative : thus
AB =— BA, or, ',u.“AB + BA = 0.

If C is any third point of the :étraight line through A and
B, then for all possible.positions of A, B, and C we have

AB +BC'= AC,
or .\QC A B C

AB + BQ¥ CA = 0. Fic. 1
Two directed’line segments lying in the same line or in
parallel HQ'E‘B’are said to be equal if they have the same
length an'}l are measured in the same sense.

2 Posmon of a point in a plane If a point lies in a
Qwén plane, two magnitudes, or “codrdinates,” are nec-

essary to determine its position, each codrdinate being

measured in a definite sense. Thus the position of a picture

on a wall may be given by its distance to the right (or

left) of a window and its height above the floor. '
1

N



2 CARTESIAN COORDINATES [Ch.1 |

8. Cartesian covrdinates. Given a point P lying in a
certain plane, let us assume two perpendicular lines Ox, Oy
lying in the plane. The line Ox is called the x-ax7s, Oy the
y-axis, and their point of intersection O is the origin. The

N P being measured in a definite sense, from

: ] the axis fo the point. These dm:cted seg-

. Vo ments are called the Carfesion cobrdi-

nates of P : the distance from the y-axis

Fic. 2 — NP or its equal OM.L s the abscisse,

the distance MP from the x-axis ig.thé ordinate. Each
codrdinate is represented algebraically by a rnumber.

We shall ordinarily assume the axes as in Fig. 2, and
shall considen.ghscissas positive’'if measured fo the right,
negative if measured io the lefty ordinates positive if measured
upward, negative if measwred downward.

It is customary to write the codrdinates of a point in
parentheses, with,the abscissa first: thus in Fig, 3 the

point P : (3, 5), alse written simply (3, 5), has the abscissa

3 and the ordinate 5. The figure
also showsdhe points @ : (2, — 4), ___14’ .
R:(~ 8% 3),and §: (~ 3,0). [+ ?
Theaxes divide the plane into -
fom; Jcompartments, called guad- e
,mnts, and numbered as in Flg 3. N
__(\'The abscissa is positive in the 1]
firt and fourth quadrants, the [HIF
ordinate positive in the first and '
second.

—

[ =
=)

Fiz. 3

In all work with Cartesian cobrdinates, it will in general
be assumed that line segments oblique to the axes are undi- |
rected, segments parallel to an axis are direcfed. Segments :

¥ position of P is evidently known if its
distances from the axes are given, €ach

; HAfH

el A e




§4) UNITS 3

parallel to Ox will be considered positive if measured to
the right, negative to the left; segments parallel to Oy,
positive upward, negative downward. - :

By the introduction of a Cartesian cobrdinate system
there is set up a unique correspondence between poinis,
on the one hand, and pairs of real numbers, on the other: . O\
to every (ordered) pair of real numbers there correspondss
one and only one point in the plane, and conversely.* K

4. Dnits. In analytic geometry, drawings involying
Cartesian codrdinates are usually made on squiare-ruled
paper, called codrdinate paper (see Fig. 3). The unit of
measurement chosen need not, and usually should not,
be the width of one space on the cobrdihate paper; the
scale should be selected with regard\to the nature of the
drawing to be made — neither 35T it $ohasah the
points fall beyond the limits of-the paper, nor so small
that the properties of the figure become obscured. The
scale adopted should be cleatly indicated.

Cases sometimes ariséin which it is convenient to adopt
different scales on the ‘two axes, which of course produces
a distortion of the\figure (see Exs. 3740 below). Except
where the contfary is stated we shall assume always that
the unit forardinates is the same as that for abscissas.
~ To plof & point whose cobrdinates are irrational, we
employ{@€cimal approximations. For instance, to plot the
point\(v'2, V3), we might take t V2 = 1.41, V3 = L.73.

®The codrdinates defined above are more precisely calied rectangular Cartesian
caordinates. It is possible to set up a system in which the axes are oblique te
each other, but in this book only the rectangular system will be used.

The word Cartesign is derived from the name of René Descartes (159616503,
Latinized as Carfesius, who was the founder of analytic geometry.

T Of course (\/“2', '\/ﬁ) and (1.4}, 1.73) are not at ail the same po_i.tlt—jWE are
mercly doing the best we can for plotting purposes. Such approximations are

permissible only in plotting, which is an approximate process at best, or in
applications where an approximate result is satisfactory.
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4 CARTESIAN COORDINATES [Ch. I

5. Distance between two points. The distance between
two points Py, P can be expressed in terms of their co-
ordinates by the Theorem of Pythagoras. Leét the coordi-
nates of the two points be denoted by the letters x, y with
subscripts: Py : (x5, ¥1), P2 1 (x5, y2). Now, in Fig. 4,

— — "\
1) d =V P+ QP* .
k4 Pg But ¢ '\’ ’\"'\
i) PlQ = M1M2 = OMQ\'_ OMh
i Q QpP,; = M.P, —'qut
that is, O
o 7 PiQ = xp35%y,
Fic. 4 QP; ;'{jé,\._ y1.
Substithtingeiargrave find - O
@) d =V — %P+ W — v

By drawing the figur&'in various positions, the student
may convince himgélf that the formuta holds no matter
where the points(})l, P, may be situated — not merely
‘when both pqiﬁté lie in the first quadrant.

Example;;s'.; "(a) Find the distance between the points
W’Iﬁrmula (2), or directly from a figure, we find

O __
R\ d =V{= 87+ 22 =vV& = 2V1T.

.\" 3 X .
- (b) A point moves so that its distance from the origin 18

always 2. Express this fact by an algebraic equation.

Let the codrdinates of the moving point be (x, ¥)-
Then, by (2), the distance of this point from the originy
is V22 + 32 Hence the required equation is "

vVt + v =2, or xﬂ—l—y?-_——tl.



§ 5} DISTANCE BETWEEN TWO POINTS 5

EXERCISES

Draw the following figures on cobrdinate paper, choosing a suitable scale
in each instance.
1. Triangle with vertices (1, 3), 5, 0), (— 2, — 1). -
2. Quadrilateral with vertices (5, — 2), (4, 3), (— 2, 3), (2, — 5} -
3. Quadrilateral with vertices (. — %), (3, 0), (— 1,0}, {(— —';{r).,-—;\
4, Triangle with vertices (24, 12}, (— 30, 6}, (15, — 15).
5. What can be said of the cotrdinates of all points on the x-a%is2
On the y-axis? On the line through O bisecting the first and third- quad»
rants? The second and fourth quadrants? On the line parallel™o the
y-axis two units to the right of it? Two units to the left? N
6. Where does a point lie if its abscissa is 07 If its ord{rtate is 07 If
abscissa and ordinate are equal? Are numerically equal burr.}f opposite sign?
Find the distance between the given points.
7. (5, 3), (6, 7). N Ans. V17,

¢4

8 (—6,2),{(—4 — 3. N Ans. V297
@ - (-4 -9 www dbrauhbl ary‘ﬂrﬂg n%'\/m
0. G, -3 G -4 N Ans. £5v149, —
11. Prove that the points (5, 0},.(‘2, 1) (4, 7) are the vertices of a right—--
trlangle, and find its area. " Ans. A = 10
12. Prove that the points ( 2, 1), {0, - 5), {10, 5) are the vertices of
a right triangle, and find itszacea. Ans, A = 40,
13. Prove that the p@mts (3, 2), (7. — 2), {6, 1) are the vertices of an
isosceles triangle, and ﬁ@d its area. Amns. A = 4.
14. Prove that{the points (1, 3}, (3, — 1}, (7, — 3} are the vertices of
an isosceles trianglé; and find its area. Ans, A =86,
15, Prowethat the paints (— 7, 1), (5, — 4), (10, 8), {— 2, 13) are the
vertices of-a §quare, and find its area. Ans. A =169,
16, Prove that the points {— £, 4), {— 3,3), (— &, — 1), (. 0) are the
vertu,es of a parallelogram. Is the paralielogram a rectangle?
\ 47. Draw the circle with center at {3, 2} passing through (13, — 10).
4 ‘K;)ce.s this circle pass through (— 11, 9)?
\ 18. Draw a circle with center at {0, — 13) tangent to the x-axis. Does
this circle pass throngh (11, — 6)? Through (— 5, — 1)?
19. Find the radius of a circle with center at (3, 1), if a chord of ]e%
6 is bisected at (6, 5). Ans, V34
20. Find the radius of a circle with center at (1, — 1}, if a chord of
length 10 is bisected at (2, O}.



e
6 ’ CARTESIAN COORDINATES [Ch. I
» 21. The center of a circle is at (5, 3) and its radius is 5. Find the length
of the chord that is bisected at (3, 2). Ans. 4V'5,
22. The center of & circle is at (6, — 1) and its radius is 6. Find the
length of the chord that is bisected at (3, 4). Ans. 23,

23. Prove that the quadrilateral with vertices (0, 4), {7. — 7), (2, — 2),
{1, — 9) consists of two equa!l triangles placed base to base, and find its

area. Ans. A = 30
24. Prove that the lines joining (6, 2), (13, 1}, (12, — 6), (1, — 8) fotm
a kite-shaped quadrilateral, and find its area. Ans. A\A75
By division into triangles in a suitable way, find the area of thg quadn-
lateral having the given points as vertices. N
«98, (8,4), (7. —3), (— 4, —5), (1, 5). ’ : Ans. 75.
26. (3,2), (— 8 9, (— 3, 4), (— 10, 3). o Ans. 20,

27' (0’ 0)) (_ 3! 4): (_ 7, 1)) (_ Gr - 6)-
2. (- 1,3), 0,5, (— 7, — 4), (8 — 2/
Determine whether the given points lie ip';;\si:faight line.
gy dbpaulitgpny oredn (1o, — D 6,9, 6.4, 6.2
81. {—5, —5) (5, 2), {12, 7) 32. {—2,12), {9, 6), (22, — 1)
Express the given statement hy, means of an algebraic equation. What
is the locus of the point {x, ¥ }m' 2ach case?
88. The point (x, ¥) is@t the distance 3 from (6, — 2).
22\ Ans, xt + 30 — 122 + 4y + 31 = 0.
. 34, The point (Rﬂi)'m at the distance 2 from (— 5, 7).
Ans. 22+ -+ 10x — 14y + 70 = 0.

.36, The pomt(x, ¥) is equidistant from (4, 2) and (— 3, 3).
Ans, Tx —y = 1.

,,36..:Qhe pomt {x, ¥} is equidistant from (— 3, 5) and (— 4, — 2)
\/ Ans, x + Ty = T.
Dfa'}r the following figures, with the y-unit twice as large as the x-unit.
L 87, The square with vertices (0, 0}, (1, 0), (1, 1), {0, 1).
\”\; *’ 88. The right triangle of Ex. 12.
89. The isosceles triangle of Ex. 13.
40. The square of Ex, 15.

6. Division of a line-segment. Given two points
11 (xy, ¥, Ps:(xs, ¥2), let it be required to find the
point P : (x, ¥) lying in the line joining P;, P, and so



§6] DIVISION OF A LINE-SEGMENT 7

placed that the segment PP is a given fraction of the
entire segment P, P,: say

PP =F- PP,

By similar triangles,

¥ B
MM _ E}}_)— — P/
M],Mg PP, ’ ’\:\
or B ~
MM = k - MM, \°
But o M, o M
MM, = x» — xy, 'F.IS-.,\5\
so that !
x = OM, + MM = x + kiga= x1).

A similar formuta for y is readily &%ﬁ?&‘-nbra

If P lies in the segment P, Py produced, rattier thanin
the interior of the segment, then cobviously & > 1, but
the result is the same. Hence:

If P : (x,y) is a pointin the line-segment PP, or in PP
produced, and if P is$0 placed that PP = Fk « PyPs, then

1) x=n+km—x), y=yp+ k-

Exampless (&) The segment from (1, 3) to 5, — 2) is
trisected. Find the point of trisection nearer to (1, 3).
Here\ﬁ% 1, % — x1 = 4, y» — %1 = — 5, so that
AE1434=3 y=3+1- (-5 -4
~Thus the required point is (Z, ).
. (b) A line is drawn from (5, — 4) to (7, — 9), and is
then extended beyond the latter point so that ifs length

is doubled. Find the terminal point.
Herek =2, 2 — 11 = 2, ¥ — N =~ 5, so that

x=5+4=9  y=—4-10=—-14.
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7. Midpoint of a line-segment. An important special
case arises when P is the midpoint of the segment P,P,.
Putting 2 = 1 in (1), § 6, and simplifying, we find that:

The covrdinates (x, v} of the point midway befween the
points (x1, y1), (X2, ¥s2) are

ey x=4x+ 1), y=3y+ y)

EXERCISES K\ A

1. Trisect the line joining (7, — 2}, (3, 5). Ans. (&, ;) (F, 9.
2. The segment joining (6, 14), (2, — 2) is to be dm‘deci into four
equal parts. Find the points of division. ’\'\
3. The segment joining (5, 0), (4, 3) is divided.inte two segments, one
of which is three-fourths of the other. Find the p{mt of division,
Aﬂs (3_" _&} (3_1 J")
4. The segment joining (3, — 2), (10¢ TS) 15 divided into two seg-
mente,okbsaulibae sebEiiths of the other,YFind the point of division.
5. The segment from (— 1, 4) to(B, 23 is trebled, Find the endpoint.
6. The segment joining (4, 3) (6 — 1) is extended each way a dis-
tance equal to one-half its own lengt:h Find the endpoints.
7. Prove in two ways that the lines joining (19, 4), (3, — 5), (1, 1)
form a right triangle. Findthe area of the circumscribed circle.
8. Prove in twowaisthat the tines joining @, 4), (— 2, 3), (8, — 20)
form a right tnangle \f}nd the area of the circamscribed circle,
9. Prove in tkvn ways that the lines joining (, 1), (2, 5), {3, — 2),
& — 6) form apérallelogram
10. Provg In two ways that the lines joining (1, 2), (-5, 1),
(-6, —&)Y0, }) form a parallelogram.
uMee consecutive vertices of a parallelogram are (4, 2), 5, 3).
(G = 4). Find the fourth vertex,
M2, £ P {x, ¥) divides the segment from Py : (x1, 3.} to Py : (%2, )

\ in‘aemally or externally in the ratio 7, : 1o, f.e. if 22 = 7 show that

N
\

PP: Ta
x = ¥ nn y = N + rin
N+ n+mn

{Note that for external division, either r, ar 7 is negative.}
13. Solve the examples of § 6 by the formulas of Ex, 12.
14. Solve Exs, 1-6 by the formulas of Ex. 12.
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8. Inclination; slope. The angle of inclination, also
called simply the fnclination, of a straight line is the (posi-
tive or negative) acule angle o between the line and the posi-
live x-axis, this angle being measured from Ox lo the line.

The slope of a line is the tangent of
the angle of inclination. Slope is usu-
ally denoted by m:
6N} m = tan o

With the axes in the usual position, ] 7 (™
a line sloping upward to the right has i
positive slope, since the tangent of a positivé{acute angle -
is positive; a line sloping downward fo zhe‘:ggohz has negative

slope. R \« )
For the line through P : (x5, y1)E2 : (%2, ¥2), we have
Cone lmiener
RS ¥ PlQ
B A Thus it follows from § 5 that:
N The slope of the line joining the
/ Npoints Py (x4, 30), Pa i (%2 32) iS5
=« LS
~ 0 ) Y=,
Fic. 7 (2) m X2 — Xy

In ordinafyylanguage, the “slope” of a line means the
ratio of /fige” to “run” —ie. the ratio of the vertical
dista??w\fo the horizonial distance covered in traversing
any segment of the line. Thus a road with 109 “slope,”
oF $grade,” rises 10 ft. for every 100 ft. horizontally.

is is exactly equivalent to the definition given above.

It appears from (2) that lines parallel 1o the X-axis
(including the x-axis itself) ave the slope 0. For in that
case y: = Y.

Tt should be noted that the idea of slope is meaningless
in the case of a line parallel to the y-axis (including the
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y-axis itself), since tana increases indefinitely as o
approaches 90° — or, as we say, tan 90° = o, For this
reason, in all discussions tnvolving slopes, lines parallel
1o Oy are excluded.

9. Parallel and perpendicular lines. If two lines are
parallel, they have the same slope; and conversely.
Given two perpendicular lines X, A, with slopes (),

m, = tan ai, my = tan a,, R l,\

let X, denote the one with pesitive slope. Rexﬁé}nbermg
that e is negatlve, we see that a = e +. 9Q‘<, so that

¥ 1
fan s = — cot'w
: OT\ T T tanay
or ..\
o wzdbraul lary org.in PNY; 1

| N, = — —-

O (Om=-i
Fic. 8 Thus’we have the

THEOREM: If two lines™ are perpendicular, the slope of one
is the negative reciprocal. of the slope of the other; or in other
words, the produ t@"..fheif slopes is — 1.

Here also the converse is true; proof of the converse will
be left to the: student.

Exampl{ > Prove that the points g
: 2), Ps: (0, 5), Ps: (3, 1) are
the v’&tlces of a right triangle. Z
_~Erom the figure we see that if there is
'“\ja:fight angle it must be at P,. The slopes

i

B
of P.P,, PP are respectively s
_
m _5—3 =2 m _1=-3__1 ¢ Fic. 9
1ToF1 T~ *T3x1 2 16

whence it follows from the theorem (converse) that PP,
and P.P; are perpendicular.
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10. Angle between two lines. By the angle from a line
A, fo another line X, we shall understand the acufe angle
through which A, must be rotated to come to coincidence
with M. This angle is considered positive if measured
counter-clockwise, negative if measured clockwise. In case
we are concerned only with the magnitude of the angle
without regard to sign, we may speak merely of the angle
between the lines. %

Let the lines \;, A make the (posi-
tive or negative) acute angles ay, o
with Ox, and denote by ¢ the angle
from A to As. Then we have

Gy = Q1 + ¢,
whence R
¢ = ay — &1 ww\é.djal‘aulibrmg.,c]m,jn

and R
_ _ v;:"tanaz—tanal .
tan¢ = tan (a ai) 14 tan e tan o

But the stopes of the lines'are
tan Xy {:',\?ni, tan oy = M,
so that the angle };'a}t%een* two lines of slopes My, Mg 1S given
by the formuiq:}'
69) p)  tang =

m, — ny .
& 1 + man: .
Thi&'ésult will be more easily remembered if we realiz
thzgtf"it is not, propetly speaking, a new formula at all,
~ut merely a restatement of the familiar formula of
\tfrigonometry for the tangent of the difference of two
angles.
Formula (1) fails if one line, say As, is parallel to 0y,
but in that case ¢ = 90° — o, so that tan ¢ = cot ay.

* More precisely, the angle from the first line to the second.
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EXERCISES
Find the slope of the line joining tl:gg-iven points. Draw the figure.
1. (3, - 4); (_ 1) 2}‘ 2- (5’ 3)’ (39 e 2)'
3. (—6,2), (2, —5). “4, (— 7, —5), (— 3, 0).

Test the following statements (Exs. 5-10) by methods based on §§ 8-9.
5. The lines joining (1, 3), 6, 5), (5, — 7) form a right triangle, *
6. The lines joining (2, 4}, (3, 8), (5,1}, (4, — 3) formaparallelogr
7. The lines joining (— 5, 3), (7, — 12}, (12, 24), (0, 39)\f0rm a
parallelogram.
8. The perpendicular bisector of the line joining (- (3 1) {13, 3)
passes through (7, — 14). +*¢
. The points (1, — 9), (7, 6), (3, —4) lieina str;{’ght line.
0. The points {0, 2), (4, 1), (16, — 2) lie in a\gtraight line.
11 Solve Ex. 31, p. 6, by a new method. , {7
WWW (h;e E)i 32, p. 6, by a new methed \
Prove ltr%l!lg qrfﬂrriateral Wlth wertices (0, 1), (4, 2), (3. 6),
{— 5, 4) has two right angles. Find the area. Ans. A = 5L
14. Prove that the quadrllatem]; with vertices (10, 10, (— 14, — 2),
{—10, — 10}, {4, — 24) can be «dl\rlded into two rlght triangles. Find the
area.
- 15. Find the interior aggies of the triangle of Ex. b.
" 16. In Ex. 6, find the angle between two adjacent sides.
17. For the tnarh{e of Ex 31, p. 6, ﬁnd the interior angles.
Ans. tan ¢ = 1ig, tan ¢z = zkr, ta0 ds = — 1§5-
18, For ghetfiangle of Ex. 32, p. 6, find the interior angles.
19. Usu}g the formula A = 1 ke sin o, where o is the angle between
the md\b ¢, find the area of the triangle of Ex. 31, p. 6. (See Ex. 17.)

Ans. ';g
20. Using the formula of Ex. 19, find the area of the triangle of Ex. 32,
,\p6 {See Ex. 18) Amns. 3.

\ ) 81, Prove the converse of the theorem of § @,

11. Application of analysis to elementary geometry-
The representation of points by pairs of numbers, which
is effected by means of a Cartesian codrdinate system,
establishes a connection between algebra and geometry
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which enables us to express the- geomelric properties of a
figure in algebraic language, and thus to solve geometric
problems by purely algebraic (analytic) methods. Many
important theorems of elementary geometry, particularly
those involving polygons, can be proved analytically
by the theory of the present chapter.

Example: Prove that the diagonals of a parallelogram,
bisect each other. R\,
Let us place the parallelogram in the position shown.
The codrdinates of O are (0, 0), those of P, may be taken as
(x., 0), those of P as (xs, y), Whence those of Py must be
(x1 + %s, ¥2). Thus the midpoint \%

of P.P, is (xl + % léﬁ) likewise

2 \

the midpoint of OP is (x1 _;I3— 2 'yz— ‘i‘“"g 2
which proves the theorem. %" ‘

It is obvious that if thé\property lo be proved is inde-
pendent of the posttionldf the figure, lhere is no loss of
generality in assuming the figure in any convenient postiton
with reference tp\t:he coordinate axes. Thus the proof
just given is entirely general. On the other hand, the
figure itselfchitst not be made special in any way: for
instance,~it> the above example, by assigning numerical
codrdinates to the vertices, or by choosing as the given
parallélogram a rhombus or a rectangle.

Fic. 11

.. (Burther, this point must be carefully noted. While in -~

< dlementary geometry the proof is obtained by studying
the properties of the figure, in analysis the proof arises
~ from algebraic work involving the cobrdinates: the figure

is of no use at all beyond helping us to bear in mind the
nature of the problem. Our notation must therefore be
such that the codrdinates themselves express the date of

Q)
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the problem. In the example, when codrdinates have
been assigned to three of the vertices, those of the fourth
are determined, and must be correctly expressed in terms
of those already assigned. If this is not done, the proof
is impossible. '

EXERCISES .s\

Prove the following theorems. £\

=" 1. The midpoint of the hypotenuse of a right triangle i 13 eqmdlstant
from the three vertices.

v~ 2, The diagonals of a rectangle are equal. R '\’\ 4

8. The distance between the midpoints of the nien-parallel sides of
a frapezoid is half the sum of the parallel sides. WO

+ 4. An isosceles triangle has two equal mech,é'ls.
b. WA tggngle }éavmg two equal med:ans ig isosceles.
Td
%[ ’Ffl ]nsl oty ?rr%ngrle mtersect in a trisection point of each.

7. If the diagonals of a rect.angl.e are perpendicular, the rectangle is
a square.

8. If a convex quadnlatera}l has two opposite sides equal and parallel,
it is a parallelogram. - A

9. The lines ]cumugg‘the midpoints of the sides of a tﬂangle divide
it into four trmngl&&equal area.

10. A quadnlat whose diagonals hisect each other is a parallelo-
gram.

11. A g{adnlateral whose diagonals bzsect each other at right angles
isa rhom :

IQ\The diagonals of an isosceles trapezoid are equal.
13 A trapezoid whose diagonals are equal is-isosceles.

) v 14; The line segments joining the midpoints of opposite sides of a
N\ quadnlateral bisect each other.

Vv 15. The line segments joining the midpoints of adjacent sides of a
quadrilateral form a parallelogram.

16. The sum of the squares on the sides of a parallelogram equals the
sum of the squares on the diagonals.



CHAPTER 1I

THE LOCUS OF AN EQUATION

12. Constants; variables. In analytic geometry we O
deal with two kinds of quantities — “constants” andy,
“yariables.” o\

A consland is a quantity whose value remains unchaiggéd
throughout any given problem. Examples are theycoordi-
nates of a fixed point, the radius of a given-¢ircle, the
slope of a given line, etc. Codrdinates of fixed points are
usually denoted by the letters x, ¥ wit}:rs\subscripts, as
(i1, 1)» (%2, ¥2), €tc.; other letters, stch as g, b, m, etc.,
are also used to denote constantsy “rdbraulibrary.org.in

A variable is a quantity that giay take different values
(usually an infinite number of Hem) in the same problem.
The variables most frequently occurring are the codrdi-
nates (x, ¥) of a point nioving along a definite path.

For example, the fa\f:tthat a moving point (x, ¥) remains
always at the cons}ant distance ¢ from the origin is ex-
pressed by the .\’eduation
6)) "\:\ X243 = o
This eglation evidently remains true if the point (x, ¥)
moveé:along the circle of radius ¢ with center at 0.

I elementary analytic geometry, all quantities occur-
‘g — both constants and variables —are restricted
to real values. Thus, in (1), putting x = 34, We find
y =+ 3+/3a, which says that the points (30, + 3¥V30)
are on the circle; putting x = 24, we find y = +/3ai,
which merely verifies the obvious fact that there is on
the circle no point with abscissa 2a.

15
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13. The locus of an equation. Let two variables x and y
be connected by an equation — for instance,

y=31x+2, ¥ =2, cetc

If any value be assigned to either variable, one or more

values of the other are determined, in general, by the.
equation; thus there exist infinitely many pairs of values

of x and y that satisfy the equation. Each pair ogf\'ﬁﬁm-

bers may be represented geometrically by a paint. The

points so determined are not scattered at randoin through-

out the plane, but form in the aggregate addefinite curve.

This curve is called the locus of the equation:

The locus of an equation is a curye’ containing those
points, and only those points, whoge cobrdinates satisfy
the éﬁwﬂaﬁullbral ¥y.0rg.in '

The curve corresponding taa gwen equation is said to
represent the equation geonwmcally, while the equation
represents the curve analytieally. The study of plane curves
by means of the equations representing them forms the
subject-matter of plane analytic geometry.

The elementaty method of tracing a curve is to find a
number of pairs of values of x and y satisfying the equa-
tion, plot ilie’ corresponding points, and draw a smooth
curve throtigh them: this curve is approximately the de-
sired\\kbcm The great objection to this method is that it
sheds ‘but little light on the general properties of the
curve Better methods will be developed as we proceed.

It should be remarked that in exceptional cases an
equation may represent only a single point, or it may
have no locus whatever. For example, the equation
x% 4 ¥ = O is evidently satisfied only by the cobrdinates
(0, 0); the equation x2 -+ y* = — 1 is satisfied by no real
values of x and y.
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To plot a curve by points, we proceed as in the exam-
ples below. Sometimes it is convenient to adopt differ-
ent scales in the two directions {see §4). The scale or
scales adopted should always be noted on the drawing.

Examples: {a) Trace the curve y = 1x + 2.

We assign values to x and compute the values of y:

x 0 {1 ]2 |-1]-2]-3]-4]-5 O
ylzlglslattlslol—340O

We now plot these points, choosing say two spaces on
the coordinate paper as the unit, and draw a smooth curve
through them. It should be noted
that the curve picks up the points
according lo the algebraic order of |
the values of x — not as they are 3% dbratthitary ot
arranged in the above table. The\ { 1] "y i

“curve” in this case appears.to — =
be a straight liné: it wild be
proved in § 26, and asSumed meanwhile, that the locus
of every equation of the yirst degree is a siraight line.

p L\ ! (&) Plot the curve
i At P = 2.

[ Y]
-

i
|l

5

]
ALY
2 {
!

7 S

> Here, to avoid the extrac-
o tion of cube roots, let us

OR»
e fi: LhierT{ Write the equation in the
ST form

&

=

~O Fic. 13 x = 4y

dnd assign values to ¥. Since x becomes very large as y

increases, we will assign moderately small values to y:
yIOI%III%WI 3 )l -% -2
ol |3l &[ﬂ—l—%|ﬁ4
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14. Intercepts on the axes. To find the points where
the curve crosses Ox we must evidently pui y = 0 and
solve for x; to find the intersections with Oy we put x = 0
and solve for y. Of course in some cases the solution cannot
be carried out on account of algebraic difficulties.

The directed distances cut off by a curve on the axegn
measured from (0, 0}, are called its x- and y-inferceplts,

Example: The curve 322 + 2y = 12 has intercepts P2
on the x-axis and 6 on the y-axis: ie. it passes t?hrough
the points {+ 2, 0) and (0, 6). .

16. Symmetry. Two points P,, P, are said'to be placed
symmetrically, or to be symmetric, with réspect to a line, if
that line is the perpendicular b1seet3r of the segment
P\Py; theding s then.called an axds, f symmetry (the line
A in Fig. 14). Each of the pomts P,, P, is said to be the
image, or reflection, of the other in the line A. A curve or
other plane figure is symmetric with respect to an axis * if,
corresponding to every point P; of the figure, the image-
point P, in that ax1s dls0 belongs to the figure. This means
that the figure is ¢inchanged by reflection in the axis — i.e.
that the part of the figure on one side of the axis is the
image of the part on the other side. Figure 14 shows a
curve syn{metnc with respect to the indicated line.

F1G. 14 Fic. 15

* Obviously, this use of the word “axis’ has nothing to do with “axis” of
cobrdinates. There are two axes of cobrdinates, whereas a curve may have no
axie of symmetry, or one, dr more; further, if there is an axis of symumetry, this
line need not be chosen as an axis of codrdinates.
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Two points P, P are said to be placed symmetrically
with respect lo a point 0 1if O is the midpoint of PP, A
plane figure is symmetric with respect to a point O if, cor-
responding to every point P, of the figure, there is a point
P., also belonging to the figure, such that O is the mid-
point of P1Ps. The point 0 is called the center of symmelry,

or simply the center. In Fig. 15, the curve has the point O,
as center of symmetry. . A\

16. Tests for symmetry. From the definitions of §15
we deduce analytic tests for symmetry of a cpnjre"with
respect to the codrdinate axes and the origin.\"

THEOREM 1: A curve is symmelric wilh respect 1o the x-
axis if ifs equation s unchanged * whew)y”’'is replaced by
- — y; and conversely. A curve 1S symmetric with respect

10 the y-axis if its equation is unchauped sihentbiaseplecad
by — x; and conversely. R

THEOREM 11: A curve is syinmetric with respect 10 the ori-
gin if iis equation 1s unchanged when % 1s replaced by — %
andy by — ¥ sz’multaycqéusly : and conversely.

Proof of 1: By ipothesis, if any pair of cobrdinates
(x, ¥) satisfy the'equation, the codrdinates (x, — ¥) of the
image-point with respect to the x-axis also satisfy the equa-
tion. The proof of the converse is left to the student.

The~1\f£jcif of II is also left as an exercise.

Ex;gzjn}ple: Trace the curve
O a2 — 3t =4

"When y = 0, x =+ 2; when x = 0, y is imaginary, so
that the curve does not intersect Oy. The curve is sym-
metric to both axes.

)

* More precisely, if the new form of the equation is equisalent to the original

form— i.e. if cach form is satisfied by ail the values of the variables that satisfy
the other.

Q)
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¥ Writing the equation in the

form
y=1va—4

we see that y is imaginary if
7 z x 13 numerically less than 2.
Values of x greater than 2 give(

the following points: A

xl | 4 | 5 |\6
Frc. 16 y1+\/_‘+2\/_i+\/_1‘+4\/_

On account of the symmetry with respgchp\‘to Oy, the
portion of the curve corresponding to negative values of x
can be obtained by reflection in Oy. N4

www.dbraulibrary.org.in ,\ g
EXERCISES

Draw the following straight lines. Ploi three points in each case — the
third as a check.

.“

1. 2x —y = 6. 3.’0’ 9. x4 3y =3

8. 35 -5y +6=0 s &Bx-—4y+10=0
5.6x+5y+1f£&> 8. x+2y+30=0
7.3x—5y=0\\” 8. 2x+ 3y =0

9. x +2 = ON 10, y = 5.

Find the intefcepts on the axes, test for symmetry, plot a number of
points, and t.@oe the curve, choosing a suitable scale in each case. |

11, y2xt + 3. 12, y = 1 — 422,
18y = =* ~ 3x. 14, y =3 + 2x — 2%
M8 xty b =0 16, x — 22 — 4y =0,
O w20 =2 18. 2% + 3y = 9.
/ 19, 9142 4 492 = 1, 20, 4x2 4+ ¥ = 400.
21, 4a2 — 42 =4, 22, 22 - 2y = 2.
23, 2t —¥ 41 =0, 24, x2 — 4y? + 16 = 0.
25,y = x? — 5a® 4 Gz, 26. y = x® - Ta? + 6x.

27. y =% — 22t — 9x + 18, 28, y =— x% 4 3xt — 4.
29, x = (32 — 1) 30. x = ¥2(4 — 3.
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31. Without formal proofs, state how many axes of symmetry are
possessed by (g} a circle; (8) a circular arc; (¢) a straight line; (4) a lne
segment; {g) a square, Ans. {d) Two.

32. Show that two circles taken together always have one axis of sym-
metry. When are there two such axes? When more than two?

$3. When do three circles have one or more axes of symmetry?

84. When do two circles have a center of symmetry?

35. Prove analytically that if a curve is symmetric with respect to
Oz and Oy, it is symmetric with respect to the origin, Show by an examﬁlé
that the converse is not true.

_ 86, Prove the theorem of Ex. 35 geometrically. “~\

87. Prove that if a curve is symmetric to one omrdmateams and the
origin, it is symmetric to the other cobrdinate axis also, m\

\

17. Consequences of the definition o locué. From the
definition of locus of an equation (§ ].3)\ it follows that a

point lies on a curve if and only s codtdiantes SEEn
the equation of the curve. This suggests

RULE 1: To find out whether\a point lies on a given curve,
substitufe s codrdingtes fat % and v in the equation of the
Clrve.

Example: (a) The pbmt (2, 12) lies on the curve

‘ \\ y = 3x*
because O
A/ 12 =3-4;
the pOmIC(v 1, — 3) does not lie on the curve because
\\ —-3=3-L

RULE II: To express analytically the condition that a point
mshall lie on a curve, wrile the equation of the curve wilh the co-
ordinates of the point substituted for x and y.

Examples: (b) The point (x,, ¥,) lies on the curve

) . ¥ =4dx
if and only if
y12 - 4x1.
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(¢) Determine the constant 4 so that the point (— 2,— 3y
~shall lie on the curve )

¥ = axi
Substituting the codrdinates (— 2, — 3), we get
' — 3 = 4a, or a=-—2%
and the equation of the curve is N\
y=— 3% O\

RULE I11: To find the ordinate of a point on a cufte when
the abscissa is given, substitute the given abscissadfor’x in the
equation of the curve and solve for y. SimilarQrZWe may find
the abscissa when the ordinate is given, N

18. Factorable %gu%ggxﬁ;s. In algeb@ “when the product
of two OF more factors is equal fe\U; the equation thus
formed is satisfied whenever angy6ne of the factors is 0.
y For ingtarice, the equation

(1) 380x + 29)(a% — 9% =0
is'satisfied if and only if

AN2) %+ 2 =0,
G x+y=0,

9 or
iy () x—y =0

Hene¢;~\the locus of an equation whose right member is
0 -a;ﬁ\“whose left member can be factored consists of all
peits whose cobrdinates when substituted in the equa-
~Sion cause any one of the factors to vanish. That is, the
‘.curve represented by such an equation breaks up into
several distinct curves, viz. the loci of the equations formed
by equating the several factors separately to 0. Thus
equation (1) above represents (Fig. 17) the three straight
lines (2}, (3), (4).
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19. Points of intersection of two curves. The points of
intersection of two curves are points whose codrdinates
salisfy both equations. There are no other points having
this property. Hence the poinls of intersection of two curves
are found by solving the equations of the curves as simul-
lareous equalions. :

It may happen that all the values of x and y, found by,
solving two simultaneous equations, are imaginary; or the.y
equations may be “incompatible” — i.e. not satisfied by
any pairs of values either real or imaginary. In eitkien case
the result means that the curves do not intersect

After solving two simultaneous equations. the results
should always be tested by substituting thevalues of x and

yin both equations and noting whether the equations hold.
W.W,dbraulibrary,org.in

Example: Find the points of intefsettion of the line

(1) 2x +y=10 & \,
and the circle O
(2} 2 Ay = 25,

Substituting the ){&I;bie of ¥ from
(1) in (2}, we get N\ /-
22 -+ (104> 2x)2 = 25,

or e g
B’ oo 40 + 75 = 0,
\:"2\:'*"— 8x+ 15 =0,

-]

whencé\"
N\ x = 3orb. Fio. 18
By,
N y =4or(,
and the points are (3, 4), (5, 0).
Check:

6+ 4 = 10, 9+ 16 = 25;
10 40 = 10, 25+ 0=25
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The degree of a term involving x and ¥ is the sum of the
exponents of x and ¥ in the term. Thus the terms 12,
3xy, 29 are of the second degree in x and y; 3x%, 2x3° are
of the fourth degree,

The degree of an algebraic equation in x and v is that of
the term of highest degree when the equation is ratioms\
alized and cleared of fractions.* A curve whose equatxon
is of the nth degree is called a curve of the nth degret.”

When two equations in x and y are solved assimul-
taneous, the number of solutions (i.e. the number of pairs
of values of x and ¥ satisfying both equauons) is not
greater than the product of the degrees.ef’the equations.
Hence the number of points commonste’ two curves is nol
grealerihaniheupboductod he deg*rgesz\of their equations.

EXERCISES
Determine whether the given inl:ltS'liE on the given curve,
Curve dx 4+ v = 6; peﬁl‘ts (1,2), 2, — 1), d, —10), 0, — 6).
. Curve 2x — 3y 4= 0; points (1, 3), (— 2, 0}, (7, 6), (10, 8).
Curve y = x* % 4 21 + 5; points (— 1, 6), 2, 1}, (3, 2).
- Curve 22 —%pn+ 232 + 6y = 4; points (2, — 2), (— 2, 0), (4, 2).
. Curve y3(= 4ax; points (2a, @), (— ¢, — 26), (40, — 4a), {}s, 4).
. Curve @ 32 = 5; points (— 2, — 1), (VZ, V3), (141, 1.73).
Detqnmne k so that the straight line x - 2y = % shall pass
) &Qgh(‘l 1); () through (— 6, — 4); (¢) through (0, 0).
For what value of @ does the curve ¥ — ax® pass through (— L.
-«3)? Through (4, 2)? Through (0, 0)? Through (0, 2)? Through (2, 0)?
(" 9. Determine m so that the line y = mx -+ 2 shall pass (a) through
3 {1, 3); (9 through (2, — 2); (¢) through {0, 2); (¢) through (0, 0).
10. What is the condition that the curve y = ax® -+ bx 1 ¢ shall pass
through (0, 7 Through (2, 1)? Through (— 1, ¢}?

11. Determine A and B so that the line Ax 4 By = 1 shall pass
through the points (3, — 2), (4, 2).

=1 ¢ o g L3 B

/

* Ag regards the variables only: irrational and fractional constants may be
present.
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12, Determine A and B so that the line Ax -+ By = 1 shall pass
through the peints (7, 2), (1, — 4).

13. Determine @ and b 8o that the curve 22 + ¥ + gx + by = 0 shall
pass through the points (1, 2), {— 3, 3). Ans, g =3, b =— &5

14, Cn the curve y* = x%, find (g) the point whose ordinate is — 1;
{b) the points whose abscissa is 4.

16. On the curve 3® — x — 3¥ + 2 = 0, find (g) the point whose ordi-
nate is 3; () the poinis whose abscissa is 0; (¢) the points whose abscissa is
3 (d) the points whose abscissa is — 4. ‘\~

16. On the curve y* = x* — 2x* — 5x + 7, find the points {a) wh0§e
ahscissa is — 1; (¥} whose ordinate is — 1; {¢) whose abscissa is 2. ™

Trace the following curves, after factoring the equations (§ 18} Y

17, x2 4 3xy = 0. 18. xfy = dxyd. m\
19, 22 —dxy + 492 =00 20, 3% — dxy + 4yt
21. xyt = 2% 22. = x\ \;

Find the points of intersection of the given cugywe&g ] substitution
in the given equations; plot the two curves on the Bame P autﬁbral "y-org.in

2. dx + 4y =5 x—2y4+1=0 )

24 22+ =5 3xr—y=5 o0

26. 31 4yt = 10, 3x +y = 10.00°

26. 22 49 =5, 2 =2y 450"

27. » = x% — Bx? + 4x, 8x~"+y = & Ans. {2, ~ 8) three times.

28y =1 — 222 —5, Gy y+5=0.

20,y =23, x +y 520 =0.

8. y =22 — 3Pl y=2" -4+ 2+ 1

81. 4y = — 430'L322 1 14x + 8, 4y = 4x¥ — 37 — 18z + 8.

32y = B3O2% = 3y — Azns. (0,0, (1, 1, (L, 1), (— 2, 4).

33. y a—\ii?\;"f +6x =Ty =0. Ans. (0,0), (11} @ 4, (-39
A\ _



CHAPTER 1III

THE EQUATION OF A LOCUS

20. Path of a moving point. The work of Chapter I\
illustrated in a preliminary way the basic reason fot_the
existence of analytic geometry — viz. that the iftroduc-
tion of a codérdinate system makes it possible go'ttanslate
geometric problems into algebraic languagq and to solve
them by purely algebraic methods.

In Chapter II we took a long step' Jorward, when it
appeated tHeE W HRNSERP2 may be Tepresented algebrai-
cally by an eguation in x and %5 Whence the geometric
properties of the curve may bediscovered by merely in-
terpreting geometrically the-algebraic properties of the
equation. In that chapter, ‘however, the equation of the

- curve was always glven in advance. Unfortunately, in

practice the equationis very seldom given to begin with;

it is usually negefSaty, as a first step, to derive the equa-

tion from a géemetric definition of some kind. This prob-
lem will oeci#py us in the present chapter. '
Very ofteh the curve is defined as the path, or locus, of @
point Whith moves according o ¢ given law. In such a case,
the(statement of the law of motion usually suggests an

_eqiiality between certain distances or other quantities

-

“\nvolving the codrdinates of the moving point. We always

denole the codrdinates of the moving point by (x, ¥), and try
to obtain (by the formulas of analytic geometry) expres-
sions for the distances or other quantities involved in the
statement of the law of motion, after which it is usually a
simple matter to write out the equation of the locus.

26
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Examples: (@} A point moves so as to remain always
equidistant from the points P, : (3, 2) and P, : (~ 1, B).
Find the equation of its locus.

According to the statement of the problem, the point
P : (x, ¥) moves so that PP, = PP,. Hence, by §5,

Vi =3+~ =vE+1yP+{y-5n

This equation expresses the given law of motion and i$\

therefore the equation of the locus.* Squaring and expahd~
ing, we get N
P—6x+ 9+ —4dy44 {0~
=x*+ 2x+ 1 + 3 — 10y 4+ 25;

P

0"“ - l;
4
ot N\ * |
— = wawbwidbraulibhr o
8x 6y + 13 0, ‘AQ\' aulibr aryﬁlg in

which shows that the locus is a straight’line. —o[ 2
It is of course the perpendicu]a;:jt:i’isector of  Fie 19
the line joining the fixed point§*
(&) A point moves so as teiremain equidistant from the
line y = — 1 and the point\P, : (0, 1). Find the equation
of(its locus.
P A *The distance of any point P : (x, %)
| T i oo from the line y = — lisy+1,asisevi-
Ay Y dent from the figure, Hence we have

¥

x \}'
9 07 y+ 1=V 4 -7
XN ' R+ +l=x+yr-2y+1
NFG 20 2 = 4y.

’“\‘ oo )
\* To prove strictly that a curve and its equation as found in the presefit
chapter correspond to each other in the manner required by the definition of
“locus of an equation® (§ 13), it is clearly necessary to show (e} that the co-
ordinztes of every point of the locus satisfy the equation; (B) that every point
whose codrdinates satisfy the equation lies on the locus. The me_thod outlined
above establishes only the first of these statements. However, in most cases
the second part of the proof can be carried out by merely reversing the steps
already taken, and therefore will usually be omitted,

Q!
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EXERCISES

In each of the following cases, find the eguaticon of the locus.
- 1. A moving peint is always equidistant from the points (3, 1), .
{(—2,5). Ans. 8 = 10x + 19,
2. A moving point is always equidistant from (— 2, 2), (5, — 3).
3. A point moves so that its distance from (4, 0) is always twice its

distance from {1, ). Draw the curve. Ans, 22 + 3 =&\
4. A point moves so that its distance from (0, 4) is two-thirds.ef ifs
distance from (0, 9). Draw the curve. Ans. ¥ + y*\—\BG

6. A moving point is always at the distance 4 from (1, — 2)
6. A moving point is always equidistant from the ]me\y %3 and the ._
point (0, — 3). A;zs w4 12y =1,
7. A moving point is always equidistant from” the y-axis and the .
point {4, Q). Mns, y* = 8Br — 16,
8. A g Bing IRk Jscplrys equidistantofrotn the line x +3 =0
and the point (2, 1). .\‘Ans yt — 10x — 2y =4
9. A point moves so that its d.tstance from the point (0, 9) is three
times its distance from the line y = 1. Ans. B2 — 2> =T
10. A point moves so that lts dzstanoe from the point (1, 0} is one- |
half of its distance from the line s34, Ans, 3z% 4 4y = 12
11. A point moves so thatdts distance from (0, 5) is two-thirds of its
distance from the x-axis. 2 Ans, 9x2 3 5yt ~ 90y +225 =0. .
12. A point moves m\ahat its distance from (3, 2} is twice its distance -
from the y-axis. ™ Ans. 32 — 3% + 61 + 4y = 13
13 A point mieyves so that the sum of the squares of its distances from -
(1,0), (— 104 13 10. Draw the curve. Ans, x* + 3t =4

4, A pomt moves so that the sum of the squares of its distances from
©, 3), 0.1 £23Y is 20. Draw the curve, Ans, 3 437 =L

IB\A point moves so that the sum of its distances from (4, 0) and |
(—40)is 10. Ans. 9x2 + 25y = 225.
.18, A point moves so that the sum of its distances from (0, 1} and .
a\ (b 1) is 2V2. Ans. 222 492 = 2
’ “17.-A point moves so that the difference of its distances from (¢, 0) |
and ( By is 4. .
18. Two vertices of a right triangle are (1, 1), (4, 3), with the right -
angle at (1, 1). Find the locus of the third vertex by using § 9.
13. Solve Ex, 18 by using § 5.
20. Solve Ex. 18 by using § 7.

g
"
4
(
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. 91 Two vertices of a right triangle are (0, 6), (5, 2}, with the right
angle at {0, 6). Find the locus of the third vertex in three ways.

22, The hypotenuse of a right triangle joins the points (5, — 1),
(3, 3). Find the locus of the third vertex in three ways. (§§5, 7,9.)

21. Loci defined geometrically. Sometimes we have a
curve actually drawn, and are required to find its equation
from the known geometric properties of the figure, as in
example (@) below; or a geometric construction may hel )y
given by means of which the points of the curve are d¢- ‘
termined, as in (b). N

In such cases we assume a point of the curve in @'general
position, and denote ils cobrdinates by (x, ¥ Then the
problem is merely to express some characteristic property
of the curve by means of an equation ip%olving x, , and
the constants of the problem. (By ‘,"fli&ﬁlé‘lﬁigﬁerpmﬁ*m
erty” is meant, of course, one that holds for all the points of
the curve, and for no other pointe:)*No matter what prop-
erty is used, the result must pe-the equation of the curve.

Examples: (¢) Find the equation of the straight line
whose intercepts on thé\dxes are 04 = 3 and OB = 2.

Assume a point R5.(%, ) in a general position on the
line. Itis clear thatthe triangles MAP and OAB are simi-
lar if and onlpJE2 is on the line. Hence if the fact that
these triangles'are similar be expressed by an equation in-
volving x\é\nd v, that equation must represent the line.
Now &

AN MP _ MA. N[
N\ OB 04° =
ﬁaat is, N Z
y_3-4%
2773 L
Simplifying, we get the form 4 M ANG

2x + 3y = 6. Fic. 21
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NS "9, A cirdle is drawn having the points (4, 1), {2, 3) asends of a dlam- ;
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(b) Find the locus of the centers of circles passing
through the point P, : (0, 1) and tangent to the line
y=-1L 2

Let us draw one™ of the circles in ;.
question, and let its center P be the
point (¥, ). We note that P is equiz~,
distant from the line ¥y = — 1 and.the" -
point (0, 1), so that the locus is-the
same as in example (b), § 203

FiG. 22 y+1=ve <+ yi—zs),etc.
N\
EXERCISES ’ :
1. Find %atlon of the perpendiculary b%ector of the line joining :
@, 1), ‘(S\n\u'wé ‘a Tary.org.in \
2. Find the equation of the perpendltular bisector of the line joining
0, 5), 4, — 3). Ans, 2y =1
3. Find the locus of the oentefs 0f “circles passing through the points
1,5, (-3 ~1). O Ans. 2x 3y = 4.
4, Find the locus of the oenters of circles passing through the points ;
(-1, -3,3 -1 A Ans. 22 + ¥ =90, ;

5. The base of an {§0steles triangle is the line from (7, 3) to {— 7. 1}
Find the locus of the\t@:rd vertex by two methods. ;
6. The base{ofian isosceles triangle joins the points (0, 4), (- 6, 0) :
Find the locus i "the third vertex by two methods.
- 7. Salys.example (@) by making use of the fact that the trlanglfﬁ 5
MAP and\N B are similar.
circle is drawn having the points (1, 1), (G, — 1) a8 ends of a.1
dlametﬂ' Find its equation by three methods.

eter. Find its equation by three methods.
10. Find the locus of the centers of circles passing through (2, 5) 311‘1 gy
tangent to the linex +2 = 0. :
11. Find the locus of the centers of circles passing through (- 3, — 5)
and tangent to the liney +3 =10.

+ To draw more than one would merely ohscure the ﬁgure, without helping
us to find the equation of the locus.
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12. One of the equal sides of an isosceles triangle is the line from
(4, 2) to {3, 3). Find the locus of the third vertex.
Ans, x4+ 3 —6x — 6By + 16 =013t + 3 — 8 —dy + 18 = 0.
13. A vatiable circle i3 tangent externally fo two fixed circles of radius
1 with centers at (5, 0) and (1, 7}. Find the locus of the center of the vari-
able circle. Ans, 8x — 14y + 25 =0,
14. A moving circle is tangent to the y-axis and to a circle of radius
1 with center at (2, 0). Find the locus of the center of the moving circle.
Draw the curve. Ans, ¥ ~6x+3=0;2-2x4+3 =0
15. A moving circle is tangent to the x-axis and to a circle of radms@
with center at (0, 4). Find the locus of the center of the movmg crrcle
Draw the curve. '8 '«.
16. Two circles are drawn: one of radius v5 with center at(l 3), the
other of radius 245 with center at (0, 1). Find the eguation’sf\their com-

mon tangent. {§6.) ARSNY 4 2y = 12,
17. A line segment of length 2¢ moves with its en@m the cofirdinate
azxes. Find the locus of its midpoint. (Ans. x‘ + = a’.

18. A line segment of length 3a moves Wlthw}gn&lsb ibLansg

axes. Find the locus of each of its points of, triséction. Draw the curves.
Ans. ﬂ-—i—nlyi = 4a%; dx® + 3 = 4gf.

19. Two circles of radius 10 are di=aWn with centers at (7, 1} and
{— 7. 3). Find the equation of their, e:ommon chord, and the length of the
chord, Ans. y = Tx +2: 10V2,

20. Two circles of radius 7, m:e drawn with centersat (3,2), {— 5, — 4).
Find the equation of them\cqmm(m chord, and the length of the chord.

N ¢
Ay



CHAPTER IV
THE STRAIGHT LINE

29, Line parallel to a cotrdinate axis. Ifa stra1ght hne '
is parallel to the y-axis, ifs equation is

x=h
where % is the (dlrected) distance of the lme from the
axis; and conversely. Fof E]l points on -

™\
."

¥ that line, and no othe§ points, have the
0 b ke dbr aulkhljgbirsgégﬁn
P ®  Similarly, a ling I}arallel to and at a
3 directed distance % from the x-axis has the
equation

. y==« -
Flgu.te‘ZS shows the lines x = 2, y = — 3.

28. Line through\a given ‘point in a given direction:
point-slope fom&\\ Tet us iry to find the equation of 3 |
straight line passing through a given point Py : (%, ¥1) Ind |
given dlrectlon — i.e. having a given slope m = tan «. '-

Assunﬁ:ug apoint P : (x, ) in a general position on the
11ne (qf. (0§ 21), we note that, in the triangle P.MP,

Fic. 23

- MP
t - :
Ay MeTppm T
\) that is,
Y= _ n, {
r—xn .\.
or
(1) ¥~y = mix — x1).

32
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This is the point-siope form of the equation of the
straight line. It is one of several so-called stendard forms
which will be developed in this chapter.

The point-slope form fails in case the line is paralle] to
the y-axis, since for such a line m = tan 90°, which is non-
existent. (Note the remarks in the last paragraph of §8.)

But by §22, the equation of a line through (x, yoa

parallel to Oy is simply N\

Ny

X = x. 3

Example: Find the equation of the line through({3, — 6)
perpendicular to the line joining (4, 1) and:(g,5).
By § 8, the slope of the line joining (4, 3'and (2, 5) is
— 2, whence (3 9) the slope of the reg&i”&d line is 4, and:
W

by (1) its equation is* PN
or AN

x ~ 2y 15,
When the slope and ofie boint of a line are given, the line
can be drawn, if desired, withoul writing
the equation (seep§ 8). For example, to g
draw the line of slope § through the point 4 v
4, 2): startigé at (4, 2), we measure off
2 units te~the right and then 3 upward I
(or 4 '1;0\\51“1& right and 6 upward, or 2 to i AT AmEEEE
the Jeft and 3 downward, etc.); through

Aliedpoint thus reached and (4, 2) we 4 '
aw the line. Fic. 25

It is hardly necessary to remark that this example could be solved, and in
fact similar problems have been solved, by the fundamental process of Chapter
HI (e.g. Exs. 18-20, p. 28). In establishing formula (1) we have merely gen-
éralized the process onee for all, and in future will use the formula as a time-
saver, just as in algebra we employ a formula for the roots of a quadratic equa-
tion, The same remark applies to many other formulas later.

w.dbraulibrary org.i

A
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24, Two-point form. To find the equation of the
straight line through two given points P; .:' (xy; 1) and
P, : (x3, ¥2), we note that its slope, by § 8, is |

P el 4 8 (x2 % 1)
X2 — X1
Substituting this value of = in (1), § 23, we obtain the\
two-point form of the equation of the straight line: \
y2 _ yl Nws
X

1) y—in= Xy — X1 (x — x1)- . O
Alternate method: The equation of the j]iﬁé" through

any two points (x1, ¥1), {¥2, ¥2) may be wnt‘tél in the form

o X i Yy 1 \
(2) www dbraulibra yxglg-llﬂ 1| = ’g’t'\\'
X Yy 1 ‘\

For, first, upon expanding the ‘déterminant by minors of
the first row, we see thaj::{t}ie equation is of the first
degree,* so that its locusis'a straight line. Second, upon
substituting the codrdinates of either of the given points
for x and ¥ (Rule ‘I,g§ 17), we obtain a determinant with 4
two identical row&,“which therefore vanishes.

It may be geted that formula (2) holds in all cases —

even when theTine is parallel to Oy.

Example; Tind the equation of the line through the
POiIltS\(":\* 6, —2), 3, — 5).
Substituting in (1), we find

O +5 =— §x — 3),
S\ which reduces to
x+3y+4+12 =0. -
Check: 3—-15+12 =0, —6—-64+12=0.

*Of course this result appears even more directly from the fact that in the
expansion of & determinant, each term contains dne and only one element from
each row and each column, .
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EXERCISES
Draw the following lines.
o5 =0 2. 5 =0 B.y+a=0.
4.y =5 5. x—6=0. 6.x+7=0

Draw the following lines; then write the equations by (1), §23.
AT, Of slope & through (4, 1).
8, Of slope — & through {— 1, — 2).
-9, Through (1, 5) {a) parallel, (4) perpendicular o the line through*\
4 -1),32). N
10. Through (3, — 4) (&) paraliel, (#) perpendicular to the line thmugh
@ -5, 4 -3 N
11. Through {5, 0} {&} parallel, {5) perpendicular to the lme through
(-2 —4), (=3, —2). o)
. .5:12“’5!;:?23’11_ (1) 3, 6) (&) parallel, () perpendlwl‘a},r &g It-glﬁ e Elt%‘(o0 Iggm
Write the equation of the line by two methods ISheck the answer.
A3, Through (1, 0}, (4. 2).
14 Through (5, 3}, (— 1, B). RS
1. Through (— 1, — 2), (— 3, 58N
16. Through 2, — 3), (— 3, — 4}
% A7 Find the equations of thefiedians of the triangle whose vertices are
53,07 -1, @3, ~ 3. FiQd their point of intersection by § 6. .

18. In the triangle mﬁk\(ettlces (2,0, (3, 2), {4, — 3), find the equa-
tions of the altltw:les, agd, their point of intersection.  Ans. (— $ — #).

25. Slope-mtercept form. Given a line of slope m whose
y-intercept is¢ b\let us assume a point P : (x, ») on the line.

Then \ ¥ P
S_MP _y-—b i
AV M x T Qe o
hee b
E) . y=mx+ 0, 7z ol s
Fi:, 26

Formula (1) is a special case of the
point—slope form (§23) — viz. the case 11 = 0, 1 = b It
is known as the slope-intercept form.
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26. The general equation of first degree. If an equa-
tion is of the first degree in x and ¥, it can contain at most
a term in x, a term in v, and a constant term: ie. it can
be written in the form
(1) Ax +By+C=o.

If B =0, the equation evidently represents a-.Jipe

parallel to Oy. If B = 0, the equation can be solvedfor y:
i.e. it can be written in the form O
2) ¥y = mx 1+ b. N\ ’
Now for any value of m and any value of §there exists a_
line with slope = and y-intercept &: thits'it follows from
§ 25 that equation (2) represents a line. Hence we have
provedfm@dbl'aulibral'y_org_in ) x;.\\'

THEOREM: The locus of every. ~ég\uaiz'on of the first degree
is a straight line. RO

The converse of this theorem is also true: *

The equation of a siraight line is always of the first degres.

For, if the line is parallel to the y-axis, its equation has
the form PR
which is of theificst degree. If it intersects the y-axis, it
must have a eertain slope and a certain y-intercept (either
or both may<of course be 0), and by § 25 its equation may
be written n the form

\O~ y = mx + b,
which'is also of the first degree.
~T0 reduce the equation of any line (not parallel to 0y)
ito the slope-intercept form, sofve the eguation for v. When

*A highly critical reader might take exception to the converse theorem.
Take for example the equations

-y =0, 27— 2z 4 32 =0, =2 +yr41) =0
These equations all have the same Iocus, a straight line, vet only one is of the
first degree. However, it is natural to take the simplest — ie. the one of first

degree — as “the” equation of the line, and we will agree to do this. A similar
remark applies to various theorems later.
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this has been done, the coefficient of x is the slope and the
constant term is the y-iniercept.

Example: The equation
Ix+4y+6=0
hecomes, in the slope form,
y=—13%x— 3§ )
whence the slope is — 2 and the y-intercept is — . | O
27. Parallel and perpendicular lines. By reduciié;n to
the slope form, it is easily seen that the lines <\’
Ax+By+C =0, 3
Ax - By + K = Oy{?;‘u}d'braulibral'y_org_in
are parallel, while the lines $

Bx — Ay + K= 0

are perpendicutar. Herce, if$a line is to be parallel to a
given line, the coefficients®f x and » in the required equa-
tion may be taken the, §ame as those in the given equation;
if a line is to be pe}'f)eﬁdicular to a given line, the coeffi-
cients of x and y jn'\the required equation may be found by
interchanging e Coefficients of x and y and changing the
sign of one of dhem. In each case, of course, the constant
term must\be determined by an additional condition.

Exgmple: Write the equation of a line through the point
,21) perpendicular to the line 3x + 2y = 6.

Nhe left member of the requited equation will be
2x — 3y if the new equation is to be satisfied by the co-
ordinates (3, — 1), the right member must be what the left
member becomes when those codrdinates are substituted.
Hence the required equation is

2x — 3y = 9.
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: EXERCISES
Reduce the following equations to the slope form, and draw the nes.
A.3x —2y+4 =0. 2. x+3y—5=0
B 4x +5y 1 =0, 4, 2x -5y +3 =0,
B. 7x —4y =0, 6. 2x + 3y =0
Write, at sight, the equations of the following lines. (§27.) "\
/1. Through (~ 1, 5) (a) parallel, (5) perpendicular to the ire
2x — 3y = 4. : "\..'\
8. Through (4, —1) (#) parallel, (8) perpendicular(b" the line
3x+4y +1 =0, A3
. 9. Having the z-intercept 3 and (a) parallel, (5) parpentlicular to the
line 2x — 5y = 5. ™

10. Having the x-intercept — 1 and (g} parallel) (¥) perpendicular to
the line x — 6y = 1. RS
11. Frroutiir(ulibrayyedgaillel, (5) pefpendicular to the line 2y = 5.
12. Show that the lines x + 2y W20, 6x — 3y =5, y =2z — 1, -
and 4x + 8y + 7 =0 form a rectanglfs.:' )
: 18. Find the locus of centers of eircles tangent to the line 2z + 3y = 5
at (4, — 1). o

14, Find the locus of centers bf circles tangent to the line 3x + ¥ =9
at (1, 6). N

16. Show that a cir¢le.can be drawn tangent to the lines y =z +4
and 7x + v = 8 at (3.{7p and (1, 1) respectively.
18. Can a cir&:\be drawn tangent to the lines x + 5 =2 and
Tx+20y =9 at (‘ ¥ L, 3} and (7, — 2} respectively?
Find the angle’between the given lines, (§ 10.)
17. 3p5pdy =0, 5xr —2y = 3. Ans. tan¢ = 2%
18.8\3y =2, 3x +2y = 4. Ans. tan ¢ = %%
B x +4y =3, 5y =3x 42,
020 4x —3y =6, x Ty =2,
W) 2L 3x4+1=0, 2x+3y=86. Ans. tan ¢ =3
\J 224x=3 bBx—2y=2 Amns. tan ¢ = %
-~ 28. Linear functions. If two variables y and x are o
related that, when the value of x is given, the value of y is
delermined, then v is said to be a Junction of x. | ' -
Countless examples of functional relationship are al-
ready familiar to the student. The volume of a sphere is



§ 28] ' LINEAR FUNCTIONS 39

a function of — in other words, is determined by — the
radius; the strength of a piece of copper wire depends upon
its size; the value of a diamond of given quality depends
upon its weight.

When x and y are connected by an equation of the first
degree, we say that y is a linear function of x. Every
linear function may be written in the form \

RE

y=mx+ b. O

N

For the present, we shall be concerned only VVlths lmear
functions; examples of other types will occur lat

The variable x is called the éndependent ﬂanab!e It
is evidently possible to reverse the roles of the \ygrvan- _
ables: by merely solving for x, we ma}g Cexpress ¥ e &
function of y.

Examples: (@) A car drives from A to B, 200 miles
distant, at 40 mi. per hr. The
distance from A (in miles) after -~

time ¢ (n hours) is ¢ L /
. 5§ = 4054\\ W I . +

(8) In (a), the distance from Bis - Dle———F——
s = 200°C 40z

[

op200—- /
77,
. 5/
- . / .
&
£
.

' Fj(; 28 FIG. 29

(€ The amounf of one dollar at 59 simple interest,

afteriyears is
' A =1+ 0056
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Any function may be represented graphically by merely
plotting the independent variable as abscissa and the
function as ordinate. Evidently the graph of a linear
function is a straight line, but with this limitation: Due to
the nature of the problem, the graph may have a meaning
only in a restricted range, or interval, of values of the,
variable. Thus in (a), (b) above, we are concerned, only
with the interval 0 < ¢ < 5; in (¢), only with fc]ie‘iﬁter—
val 0 < ¢. The graphs of these functions are shown in
Figs. 27, 28, 29 respectively. )

29. Rate of change. If y is a funcHon of x, then as
X Chang%sw,g'ﬁ%lfﬁ}}{%@}’g@ﬁ value x\to a new value 1,
¥ will change from its original valuey; to a new value ..

Y - It will bqe’ﬁﬁvenient to denote the

: g oy change in'x by the symbol Ax (read
4 a  deltacay) the corresponding change
Ax . LRy .
m,y:by the symbol Ay: that is,
podi = X = AX, g — = Ay

ol Fig. 30 . ¢S\ 1his notation is commonly wused

' %« in more advanced mathematics.
Ifyisa li@gazf}unction of x, it is easily seen that when x
changes by @ny amount, the change in y is proportiond
to the change in x. For, as we pass from any point P; to

any other point P, on the graph, the change in ¥ is P,M,

the ¢hange in y is MP,, and :

'”\Z\’.\' éi__MPg__

O Ax PM™™ |

which is constant * — that is, will have the same value no
matter what two points P,, P, are chosen.

S

* . . . eans
To say that any quantity # is preporiional to another quantity # nu
— |23 .
that % = ks, or 7 — % where Z is constant. Here u = Ay, o =Ax, k=m
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The ratio of the change in y to the change in x is the
rale of change of the linear function.* We have at once the

THEOREM: The rate of change of a linear funclion is
constant, and equal to the slope of its graph.

Further, a positive rate {(slope) means that the function
is increasing; negative rate, decreasing. See Figs. 27-29.

N
L X
2N\

EXERCISES >

Express the function by a formula and draw the graph, indicatingithat
portion of the graph that has a meaning. Determine the rate of c}lange.

L. The distance covered in time ¢, by & man nmning S'y?:l: per sec.

2. The value of a consignment of grain at 60¢ per bu\as a function of
the number of bushels. wW}f\ﬁb}aulibrary_org,jn

8. The function of Ex. 2, if $100 must be deducted for transportation.

4, The value of a farm at $50 per acre, wlbli buildings worth $2000.

B. The total area (including both bases)‘0£¥ right circular cylinder of
given radius 7, as a function of the altitudeMs”

6. The radius of a circle increases(ht. How much does the circum-
ference increase if the original radiusisy(e) 1 inch? () 1 mile?

In Exs. 7-10, assume that B 15\200 mi. east of A.

7. A car, starting at nodn, drives east from A at 30 mi. per hr. A
second car, starting at 2 -00'F.M., drives east from A at 50 mi. per hr. Find
analytically and graphic&lly (¢) when and where the cars will be together;
(b} their relative positighs when the f{aster car reaches B.

8. A car, stafing at noon, drives east from A at 40 mi. per hr. A
second car, stactin@at 3 : 00 p.M., diives east from B at 25 mi. per hr. Find
analytically aé&“g‘raphically when and where they will be together.

9. A&I starting at noon, drives east from A at 50 mi. per hr. A
secongh&ir; starting at 1 : 00 B.M., drives west from B at 40 mi. per hr. Find
andlytieally and graphically when and where they will meet.

10. A car, starting at noon, drives east from A at 40 mi. per hr. A
second ear, starting at 1 ;00 P.M., drives west from B at 30 mi. per hr. A
third car, starting at 2 : 00 p.M., drives west from B at 50 mi. per hr. Deter-
mine analytically and graphically the period during which the first car will
be between the cther two. :

*Note carefully that this statement applies lo linear funciions oniy.
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11. A manufacturer can turn out 100 units of his product for $450, .
400 units for $600. Assuming that the cost € is a linear function of the
number of units s, determine the function and draw the graph, What is
the unit cost? What is the meaning of the C-intercept?

Ans. C = In + 400,

12. Arailroad can just break even on a certain run, carrying 50 passen-
gers at $4.50 or 100 at $2.50. Assuming that the cost is a linear function
of the number of passengers, determine the function and explain\the
meaning of the constants. Ans. C = Ji 5200,

18. For the lever of Fig. 31, with the fulcrum at A, it48\ghoWn in
mechanics that the force necessary to balance the weight s

E > F = E.x +}w2’
A 7T 1 t -
4 W F wherew is the weight of the lever per linear

foot. For a weight' W = 10 lbs,, it was
wlf‘ulg',&ll‘aulibrafy‘or@rﬁnd that Whh’l x =8, F =46; when
% =16, F = 51. Find / and w, and draw tlfe graph.
Ans. 1516 ft.; w = 5 1bs, 2 oz, per ft.
14, For the lever of Fig. 32, with ‘the fulcrum at A, it is shown in
techanics that the force F necessars’\te balance the weight W is

= .I_J: ﬂ —_ ’f. »
F=3Wgma RN } B AT L iEﬂ
where w is the weight of the lever per w F“?G 29

linear foot. With a lever Welghing 4 Ibs.

per ft., it was foun&thai when W =20, F = 4; when W =30, F =9.

Find 7 and Z,, and draw the graph. Ans. L =2, = 4

15. Draw a2 ;:iz:rve from which log 2x= may be read if log x is given.

30. Intercept form. Let the intercepts of a straight line

on the axes be OA = ¢ and OB = b. Since the line

passe%through the points (g, 0) and (0, d), its equation

may - be found at once (§ 24). It is left as an exercise for

W the student to show that the re-
B sult is
N 's ' bx + ay = ab. .
y Dividing both members by ab, we
o | get the intercept form
o M AT

Fic. 33 @ . E+%=1-
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To write the equation of any line in the intercept form
we have merely to find the tniercepts and substitute in
(1).- This form evidently fails in case the line passes
through the origin or is parallel to either axis.

Example: A line forms with the axes a triangle of area 16
and passes through the point (3, 2). Find the dimensions
of the triangle. e )

Use of the intercept form (1) is suggested by the fai:‘t
that we can then express the first condition at oncez

Substltutmg the coordmates (3 2) in (1), we get
3 . wwwﬁh ~aulibrary.org.in
&) R ek

Equations (2) and (3) give \
a=4, b=38, or ,:‘gii—- 12, =&

NN

¢

EXERCIS'ES
Draw the followmg lines; then: w?mte the equations, and simplify,
1. Intercepts 4, — L. \ . Intercepts — 2, — 3.
3. Intercepis 3, — &\ W Intercepts &, 4.
Reduce the following;éqﬁations to the intercept form. Draw the lines.
B 3x +2y mB 6. 5x + 2y = 20.
72xﬂ\3"\i—5—9 B.dx -5y +7=0

9. A lindmakes equal intercepts on the axes and passes through

7.3). Find its equation in two ways. (§§ 30, 23.)

ilO }\ line makes equal intercepts on the axes and passes through
(\2 )1). Find its equation in two ways.

1L, The y-intercept is twice the x-intercept; the line passes through
{4, — 3). Find its equation.

12, The product of the intercepts is 1; the line passes through {6, — I).
Find its equation. Ams. x+4y =2;x + Y +3 =0

13. A line passes through (— 4, 1) and forms with the axes a triangle
of area 1. Find its equation. Ans, x +2y 2 =0; x + 8 = 4.
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14, A line passes through {— 7, 2), and the segment of the line inter-
cepted hetween the axes s of length 5v'2. Find its equation,
15. A rectangle is inscribed in a right triangle of base b and height A.
What relation must hold between the base and altitude of the rectangle?
16. A right circular cylinder is inscribed in a
C right circular cone of radius r and height 4. What
relation must hold between the radius and heigh@f
the cylinder?
D 17. A beam BC leans against a wall, 40und is
stayed by a strut AD. If D is 2 {t. eub from the
10 wall, find the length of the strut. Ans. "6 it. 11.5 .
18. In Ex. 17, if a strut 6,,f{.”l'£§ng is used, at
what height above the ground will3t reach the beam?
O\ Ans. 5 f.35m.
6’ B 18. Obtain a general‘solution for the problem
FiggpdbraulibespopRin. 5 o, find the equation of a line form-
ing with the axes a &riangle of area A and passing
through any point (¥, ). Show that the problem is impossible if 2,91 > 3A.
A i\/;é“ IR A% g, p=ATF VAT - 242
&N X1
31, The normal formJA straight line is determined if
we know the length p of the perpendicular from the origin
to the line, togethet\with the angle 8 which this perpendic-
ular makes with ©Oz. To find the equation of a line deter-
mined in this,way, we assume a point P : (x, ») on the line
(the line KPEAn Fig. 35) ¥ :

A

Aps, g =

and draw auxiliary lines 7
as shown! Now P P
z:%"OR = X Cos §, ®
&P = ysin g, R y
\HtDR**‘QP“—— OR+RN B G g
=ON=p, o % i e
8o that * Fic. 35
(1) xcosB + ysin 8 = p.

* This methed of derivation fails in case the given line passes through the
origin. But in that case p = 0, and the equation of a line threugh (0, 0} parallel
to (1) is obviously x cos @ -1 yein g = 0. :
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This is the normal form of the equation of the straight
line. It is chiefly useful in problems involving the distance
of a point from a line, distance between parallel lines,
etc.

For definiteness we shall adopt the conventions that p #s
always positive and B is a positive angle less than 360°. R

To reduce the equation of any line R: \)

(2) Ax+By+ C=0 \

¥ 4 s
S D

to the normal form (1), we note that if equatiox} @) and
(1) are to represent the same straight line, the ¥oefficients
A, B, C in (2) must be proportional, respg@iyely, to the
coefficients cos 8, sin 8, — pin (1). Leﬁfﬁﬁéﬁﬁi@tﬁi‘iﬁ%ﬂ'@-m
hetween these numbers be dénoted byko

cos B _ sing _ , SN

a =k B "f’;s Ce Tk

so that R
cos B = kA, §uxﬁ = kB, p =~ kC.
Square and add the firsb two of these equations:

cos? )@-[— sin? § = k(A2 + BY),

Wwhence O _
G
kz(Az\%;Bz) =1, and - k=% _m}l\/——-;:_—m
Thus \Q' -
Olawpos A supos B
" rVE B VAT B

p=T-C
_ VAT + B¥

where the sign before the radical is to be chosen so that p
shall be positive. This leads to the following
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RULE: To reduce the equation of any line Ax4+By+C=(
to the normal form, divide by v A? -+ B? and choose signs so

that the constant lerm is positive in the right member.*
Example: Find the locus of points at the distance v5

from the Iine x — 2y + 10 = 0. '
By the rule, the given equation is, in the normal form,

x_ 2y 10 , ¢ \:}
vh  vh V5 O
10

so that the distance of this line from the oﬁgifl"i:é" p= 3

\

The required locus consists of the two lif%63 parallel to, and
“atadistance V5 from, the given line i\t}le distance of these

rary.org.in

lines from (0, 0) is ELUNNSVER Hgnféé’the required lines are

. vs |

x 2y 10 \
— =4+ 2L = = 4 /F N —x+2y =145
V5 V5 V5 ..jf:f"or o 4 10_—.

A EXERCISES
Reduce the following enrations to the normal form, and find the distance
-of each line from théorigin. '

1. 4x 43y A7 = 0. 2.3 —y—-5=0
3.x—4y.\'+6=0. 4. 5xr+2y+5=0.
6. y =4 > 5y 6.y =2x — 3.

7. &y = 0. B. x4+ 3y =0
?‘Q'h mx + b, 10. ¥ — 3 = m(x — x1)-

Fmd the equations of the following Hnes.
O 1i. Parallel to 3x + 4y 4- 25 = 0 and passing (a) at a distance 2 from
\ ﬁ*}e origin; (5) 3 units farther from the origin; (¢) at 2 distance 1 from the
given line, Ans. (1) 3x + 4y =+ 40; () 3x + 4y + 25 = 5.
_ 12, Parallel to x — y = 6 and passing (e) at a distance 6 from the
origin; (5) 2v'2 units farther from the origin; {¢) at a distance V2 from the

given line, Ans. B}z —y =1 10;{)x—3 =6 £2

* When p = 0, it is evident that 8 may have either of two values. This
checks with the fact that when # = 0, the rule fails to determine the sign.
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13. Paraliel to x + 3y + 4 = 0 and passing at a distance V10 from

(-1,2). Ans. x + 3y =5 + 10,
14. Parallel to 2x — 3y =6 and passing at a distance 2v13 from
@ 1. Ans, 2x — 3y =3 + 26.

15. Parallel to x — ¥ + 2 = 0 and passing at a distance 3 from (2, 3).
16. Parallel to 4y = 3x and passing at a distance 2 from (3, 1).

17. A circle of radius 3 is tarigent to the line 2x — 5y = 2. Find the
locus of its center. \

A
18. A cdircle of radius 2 is tangent to the line 5x 4+ 12y 4 26 -\0
Find the locus of its center.

19, One side of a square is the line from (0, 5} to (3, 1) Find the‘other

vertices. A - Ans. (4, 8), (7 4); (4 4,2), (:a 1, — 2.
20, The base of a triangle i¢ the line from (6, 4) to (5, 2) \the area is §.
Find thglocu.s of the third vertex. Ans. 22 —y =N\ 2x —y = 3.

31, In Ex. 20, if the triangle is isosceles, find whenthifrtarebtiomary . org.in
s, (7,25 G, 4
22, The base of a triangle joins the points (~— 2, 4), {— 1, 3); the area
s} Find the locus of the third vertex. .

23, In Fig. 34, p. 44, what is the length 6f the shortest strut AD that

can be used? Ars, 51t 1§ in.
24. Solve the problem of Ex. 23mgene:ra1 i.e inFig 34, take AB = &,
AC = b, Ans. 08
z“\.\ . v 4 b

Find the distance betwe&Q{tﬁe given lines. -
.3 -y =86 3I-—y=8 _ Ans. $V10.
%.x+2 + 550, x+2y-3=0. Ans, V5.

21. :r+4y~\l =0, x-+4y+6 =0,

28, 2x — 89 —j‘—2—0 2x -3y +3 =0 )

29, Tw&uies of a square lie in the lines 5y = 3x - 4, 3x — 5y = 5.
Find thearea of the square. Ans. &L
... 803 Find the area of the rectangle bounded by the lines x — 2y = 3,
%‘F§+2=0, Qx+y+4=0 x—-2y+4=0

3L A circle is tangent to the Fnes 4x -+ 3 +3 =0, 4x +y — 7 = 0.
Find its area, and the locus of its center.

32. In Fig. 35, what are the cobrdinates of N? .

83, Derive the normal form from the fact that ONF - NP2 = OF=.

34, Dérive the normal form from the fact that ON is perpendicular
WNP. (39) &
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32. Distance of a point from a line. To find the dis-
tance from the line
Ax+ By +C=10

{the line A in Fig. 36) to any point P, : (x,, ¥1) not on that
line, let us suppose the equation reduced to the normal,

y form:
o] s xcos B+ ysinf = 19~
N P Then, drawing auxﬂlary Tines as
25 . shown, we see that .
g z 0Q = OM cqsp = x1 cos B,
o N QS = MPXNii § = 9,5 B,

ww@&bl%%library org.in (}§ = :f‘;l@é 8+ sin 8.

Since d = 0S — p, we have \

d= xlcosﬁ—j—yasmﬁ .
Upon substituting in this jfmmula the values of cos 8, sin §,
and p given by (3), § 3k\we obtain the following:
The distance from the line
(Ax+ By + C =0
o the point (x;, }b is given by the formula
(1) :C'\ d — Ax. + By, + C’
3 +VAT L B
wkere\(ke sign before the radical is to be chosen opposite (o
the Sign of C.

It appears from Fig. 36 that the distance as given by
\ J:he formula will be positive if the point and the origin
are on opposite sides of the line, negative if they are on
the same side. Usually, however, we are concerned
chiefly with the numerical value apart from sign.

Examples: (@) Find the distance from the straight line
3% —~ 2y + 5 = 0 to the point (3, 4).
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Formula (1) gives at once

j_3:3-2-445_ 6
—13 V13

() Find the equations of the lines bisecting the angles
between the lines -
i+y=2, x—Ty+2=0
(the lines A4, X. of Fig. 37).

“The bisector of the angle be-
tween two lines is the locus of
points equidisiant from the lwo
lines. Assume a point P : (x, ¥)
in the hisector of that angle in
which the origin lies. Then the
distances M. P and ALP are
numerically equal; they are also .\
algebraically equal, since in botha cases 0 and P are on the
same side of the line and bol:h \Jistances are negative, or
when P is in the position P" both are positive. But, by (1),

X 2L » —x+Ty—2
e
so that the equafa\on of the locus of P is
sty —2 _ —x—l—7}’—2’
\"‘ V2 5v2
xx—y=4.
‘rlsumlar way the equation of the other angle bisector is
fotnd to be
x+y—2=_(—x+72r—2)
V2 5v2 ’

x+ 3y =3

Fic. 37

or &

or
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EXERCISES
Find the distance of the point from the line.

1. (5,2), 3x —y+6=0. Ans. — BV,
2. (3, —5), 2x+y+4=0. Ans. -5,
3. (4,3, 3x42v =6 v4, (0,5), 2y =z +6.

6. 3. —1), x—4y =0. ‘6. (—2,0), 3x+y=0 N
. 7. A moving point is equidistant from the origin and the line

x +» = 2. Find the equation of its locus. ¢ \A)

Ans. xt — 2zy + 3 + 4z + 49 4 =0,
B. A circle passes through (0, 0) and is tangent to thezliﬁq 243y =1
Find the locus of its center. Ans. 9x* — 12xy + 40P 4 6y =1
9. A circle passes through (1, 1) and is tangent-{0ithe line 31—y =6.
Find the locus of its center. g .
) Ans. 2 + 6xy + 997 % 161 — 32y — 16 =0,
10K R SBEREYEAE s o from 40 orgin as from the fn
x —y = 1. Find the equation of its locys{"}*
_ Ans. x5y + 3 —dx + 4y +2 =0
Find the bisectors of the angles bgfx};;een the given lines.
AL 13x — 9y =10, x + 3p'6.
S S#ns. 2z —6y +5 =0; 9z +3y =2
1% 25 4y 1 =0, x4+ 2y =2,
:m} Ans. 21x 4+ Ty +3=0; -3 ="
13 x=2 ¥ K{q: 14. x =3, y =05,
-16. 3x — » =8, vy=3xr+4 16. y =2x, 2x—y =86
My = QPF+y =1 Ans. 3 £VBx — 1 VB =V
" 18. A cireleis tangent to the x-axis and the line 5y = 12x. Find the
- locus of it cehter. Ans. 2x —3y =0; 3x+2 =0,
' 19. 4 point moves so that its distance from the line x +y =34
times\its ‘distance from the line 7x — ¥ + 1 =0. Find the equation of its.
locug,* Ans. 33x +'y = 11; 28x — 9y +19 =10
"\ 20. A point moves so that the ratio of its distances from two fixed lines
s constant. Prove analytically that its locus is two straight lines.
~ 21. A point moves so that the squére of its distance from the point
(1, 0} is numerically equal to its distance from the line x = 1. Find the
«equation of its locus. Ans. 2 4+ 92 —x =0; gtd-p—3x+2=0
22. A point moves so that the product of its distances fromi two paralld

lines is. constant. Show that its locus consists of two lines parallel to the
given lines, o .



CHAPTER V

THE CIRCLE

33. Definitions ; standard forms. A circle is the locus A
of a point that moves at a constant distance from a fixed\ ™
point, The fixed point is the center, and the constant, dis=
tance is the radius. The radius as thus defined is of cburse
merely a number of linear units; the term is a]sa‘uSed as
in elementary geometry, to mean a line-segment joining
the center and a point of the curve. ™ LSRR SR n
circle may mean either a straight line th.rmlgh the center,
or the segment of such a line lying msmle the curve,

For the circle with center at O & Y
and radius 7, we have for any“
position of the moving pomt )

VET T = a; &
if the center is at \a\hy point
C:(h, k), as in Fig. 38, ,
9]
\/(x—-k)ﬁ_]-(y_ky“a Fic. 38
Hence: T#e eqa{}lwn of a circle of radius a is, if the center

1s the po:m,{() 0) ,

1) 24y = a;
i, ﬂmcente? is the point (h, k),
@ (x — B2+ @y — k)? = @

Equations (1) and (2) are called standard forms of the
equation of the circle. Of course (1) is merely a spec1a1

case of (2):thecase b = & = 0.
51
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34. General equation. It appears from (2), §33, that
the equation of a circle is always of the second degres.

The most general equation of the second degree in x and
¥ may contain, at most, terms in a2, xy, 3% x, ¥, and a con-
stant: i.e. it may be written in the form

Ax*+ Bxy+ Cy¥’+ Dx+ Ey+F=0.
Consider now the special case in which A = C a.ne[ B 0:
(1) Ax2+Ay2—|—Dx+Ey+F—0
We may always divide this equation through* by 4,

transpose the constant term to the rightthe¢mber, and com-
plete the squares in x and y; the equatidtrthen hds the form
(2) www_dbrauht(mry.okg m (y —"k‘)’%\= &,
and consequently represents &¢ t}rcle whenever the right
member is positive. Equat10n (1) is the general form of the"
equation of the circle.

Conversely, it appears from § 33 that the equatlon of
every circle may be piit in the form (1).

When an equation of form (1) is reduced to form (2), it
may happen tl@ the right member becomes 0:

(x -+ -k =0

Since thig: equatlon holds only when x = kand y = k, the
locus ig: t‘he single point (%, &} — a so-called “pomt—mrcl&

Fm@lly, it may happen that the right member of (2) is
negative: in this case there is clearly no locus.
o) Therefore, we have the

THEOREM: An equation of the second degree in which &
and ¥* have equal coefficients and the xy-ternt 15 missing
represents a circle (exceptionally, a single point, or no locus);
and conversely.t

Q!

*If 4 were 0, we should no longer have an l.‘l.EI.thn of second degree. -
¥ See the footnote, p. 36. o

?
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Ezample: Find the center and radius of the circle
A 44y —Ax+ 2y +1 =0,
First transpose the constant term to the right member
and divide by 4:
f+YyY-—x+iy=—1 Oly
Then complete the squares in x and y:
P-x+i+y+P+ 5%

~—i+i+ ¢t
or N

G- O+ =2 e %
The center is the point C : (2, - a}), and the radms sl

EXERCISES www'&{n aulibrary.org.in

Write the equations of the following circles. X
. With center at (— 5, 3), radius v2.  °
: With center at (3, — 2), radius «/E, \
. With center at (a, 23), and tange:ﬂt to the x-axis.
» With radius ¢ and tangent to both axes.
. With center at (B, — 2) d passing through (4, 3}.
. With center at {— 1, —~ 2) and passing through (0, 2).
. With center at {0, 0)\%1(:( tangent to the line 2x — y = 5.
. With center at (2, 3} and tangent to the linex — 3y +4 =
. With center at{— 1, 2) and tangent to the line 4x —y = 5
. Using equa&sn (2}, § 33, find the condition that a circle shall
(@) gent to the y-axis; (B} be tangent to both axes;
(¢) Pase through (0, 0); {d) have its center on Ox;.
{e) “have its center on the line ¥y = mx + b. ‘
Bra;vihe following circles.
G - 10y —2 =0,
12, R g 2 -8y +8 =0.
13, 2 1 2 = 2a%. - 4x’+y’“33’
1B, 2 4 32 — 6x -+ By = 0, u{ﬁ_x’+y’+ 10x — 24y = 0,
1.3¢ + 82 +2x —4y =0,
18 22 428 —3x — 5y + 3 =0.

Ewowmaoonp o
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19. Prove that equation (1), § 34, represents a point-circle if and orly
it D¢ + E2 = 4AF.

20. Prove that (1), §34, has no locus if and only if I? + E* < 44F.

21. A point moves so that the sum of the squares of its distances from
the points (g, 0), (— @, 0} is constant (equal to #%). Find the equation ofis
locus, and draw the curve for the cases # = 6a% K = dat, JB =3

R =2a7, B =,

"\
22. Let A, B be two fixed points. A point P moves so thab\AP
+ & -BP? = I, where k, ! are constant. What kind of curve is deseribed?
Take 4, B as (g, 03, (— @, 0). Is the proof general? Discuse special/cases.
23. A point moves so that the square of its distance from 4 fixed point
is a constant multiple of its distance from a fixed line. What kind of cuve
is described? Discuss all cases. &0
24. Taking A, B as in Ex. 22, find the locus ef\& point P moving so that
AP =k -PB. Drawthecurves & = 4, & = 4, %= 5. What happens a
% approachesl brawlbprenyes 2 Increases in(ieﬁnitely?
... 2. Prove analytically that an angle ifséfibed in a semicircle is a right
angle. A\ '
- 26. Prove that the circles 2 + ¢? % 4y = 4, 3 +y=2x+10-¥

"

are tangent. Draw the figure, ~3°
27. Prove that the circles 252 — 10x — Sy =4,x2 32 =2r-F &
are tangent. Draw the figurel™® '
28. Omn the line x +,2)\= 7, find points at a distance 5 from @37
AN Ans. (3,2), (= L4
. 29. On the cir%:&’i’s’+ ¥t — dx — 10y + 19 = 0, find points at a dis
tance b from (5,5 19. Ans. (1, 2), 6, 4
30. Find ghe“intersections of the circles x* L4t 2z — 4y —3 =0,
at a2 — 43:: =6y — 5 = 0. What does the result prove?
35. :Nl}xnber of points required to determine a curve.
We ktiow from elementary geometry that a circle is

4

determined by three points. This is proved analytically

(By the fact that the equation.
) =+ (y—k2=a

contains three independent constants, #, %, and a. For,
when the cotrdinates of the three points in tum are sub-

stituted in’ (1), we obtain three simultaneous equations to
determine 4, %, q.
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More generally, a circle may be made to satisly any
three conditions which when expressed analytically lead
to three simultaneous equations for determining the con-
stants. Thus three tangents may be given, or two points
and the radius, etc. It may not, however, be unigquely
determined; there may be two or more circles satisfying A~
the given conditions. (For instance, see Exs. 11-16 below.)

The above is merely a special instance of the general R \)

THEOREM: The number of points required o determine a
curve is equal to the number of independent conslaniswn’the
equation of the curve. N

We have had a previous iltustration of thisMact in the
case of the straight tine, which as we RIOwAR diuirnined
by two points, corresponding to the fact ‘that the linear
equation contains two constants.™ ()7 - :

36. Circle determined by three'¢onditions. The general
method of finding the equationiof a circle satisfying three
conditions is, as suggestedrin § 35, to express the condi-
tions analytically by medns of three simultaneous equa-
tions which may be selvéd for the constants. The condi-
- tions may be expresSed most simply In some cases by using
the standard formiA2) of § 33, in other cases by using the
general form ALY of § 34. Very often, however, special
methods mqybe devised which are shorter than the gen-
eral metiio\d and are more easily interpreted geometrically.
Suchrinethods can usually be found by recalling the con-
§rliiction of elementary geometry for the center and radius.

* Tt might seerm at first theught that the equation Ax + By +- C = 0 contains
three constants. But if we divide through by any one of them, say A, there

remain only two conmstants, B ynd g If is clear that the essential constants

A
are not the coefficients, but the ratios of any two of them to the third. Fer
example, the equations ¥ = 2x — 3, 4r — 2y = 6, 6y = 12x — 18 all represent
the same line, Similar remarks apply to (1), § 34.
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Example: Find the equation of the circle through the
points P, : (1, 1}, Py : (2, — 1), and P, : 2, 3.
One method is to assume the equation of the circle in |
the form ™. : |
(D 2243+ Dx+ Ey+ F =0, O\
- (It is convenient to take A = 1.) Substituting the o
ordinates of the given points in turn, weget )

Ny

(2) 2+ D+ E+F =0, »\
3) 5+2D— E+F=07p""
4 13 -+ 2D + 3E 4 F =0; -

these equations may be solved for Dy E, and F, and the
results Su!ﬁ%itﬂﬁf?‘i in (1. (Or D,o\E,‘F may be eliminated |
from “équations (13, (%), (3),(4)" directly —see Ex. % .
below.) Dk - o
The same problem mayibe solved by the following
method, which has a more obvious geometric interpreta-
tion. The center lies“on the perpendicular bisector of
4 5 OP P, whose equation is found by
N/ familiar methods (cf. example (g),
§20) to be ' P
2% —dy=3; -

2 it also lies on the perpendicular hi-
sector of P,P;, whose eqitation is
N 2x + 4y = 11. S
~The center is therefore the point of intersection of these
N Ames, viz. (1, 1). ‘The radius is the distance from (3, 1) to
any one of the given points, which is found to:be-§.. By
formula (2) of § 33, the equation of the circleds >

=3+ —Dr=gp "

Evidently this method merely carries out analytically the
elementary geometric construction for the center.:;: -
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EXERCISES

Find the equations of the following circles. Check the answers.
1. Through {— 1, 2}, (3, 4), (2, 3). Solve by two methods.
3, Through (5, 3), (3, 1), (— 3, — 1). Solve by two methods.
8. Circumscribing the triangle (4, 4), (2, 1), (— 1, 3).

4. Circumscribing the triangle (4, 3), (2, 3}, (3, ). ™\
. §. Passing through the points (— 1, — 3}, (— 5, 3}, and having its \
centeronthehnefx 2 +2—0 Ans, (x+6)2—|—(y+2)2~26'

8. Passing i the. points (— 1, 1), (- 7, 3), and having 41;?:
centeronthehne2x+y—9 Ans. {(x 4 1)2 + (v — 11)% = 100.

7. Tangenttothehne4x — 3y =26at (5, — 2) and pasmngthrough
(-2, -3 . Ans. x’+y‘-—2x—2y-23 0.

8. Tangent to theline2x + ¥y = 8at (4,0) and passingsthrough (7, 3},
9, Tangent to the line y = 3x at (1, 3) and passing, through (5, 7).
10. Tangent to x + ¥ = 1 at (4, — 3) and mﬁwlmmg,m
11, Tangent to the z-axis and passing throdgh’ the points 4 —1),
(-3, —-2). Ans, Centers: (1, — 5), (21, — 145).
12, Tangent to the y-axis and passing thr;ough the points (1, 5), (8, 12).
\ Ans. Centers: (13, 0), (5, 8).
13. Tangent to the line x + ¥ = 1tzu: (1, 3), and having a radius V2.

Solve in two ways. A~ Ans. Centers: (0, 2), {2, 4).
14. Tangent to the line x —2){ 3at (— 1, — 2), and having a radius
V5. Solve in two ways. (\J Ans. Centers: (0, — 4), {(— 2, O}
16. Tangent‘.othehnees =33 +y=2 and having its center on
the line x + ¥ = 3. Ans. Centers: (5, — 2), (4, 5.
16, Tangenttothe‘hnesx +y =1,7¢ — y = 5, and having its center
on the line x +y~—\4 Ans. Centers: (— §, &)} (3, 1}.
17. Having.aradius V10, through (0, 3), (2, 5).
Ex.‘l’?by a gsecond method.

18. Havmgaradms $vZ, through (1, 0), (3, 6). Solvein two ways.
"5&0 Inambed in the triangle formed by the lines 3x — 4y = 5,
0,y =2. Ans. Center: (— & #19.
ttothelmesx+2y =4, x+2y=2,y=2cr—5. ~
Ans. Centers: (3, 0), (%~ %)
tothemclexﬂ-leﬁ-—lm at (6, — 8) and having a
: Ans. Centers: (— 3, 4), {15, — 20).
ttothemrclex’+y’+2x—6y+5—0at(1 "2y and
passing gh. (4, -1) Aps. Center: (3, ll.
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24, Prove that the equation
24y o x Y
x?P+mt o n on
Xt -+ yz* Xz Mz
2yt X s

represents the circle through (xi, ¥, (a2, ¥, (xs, ¥3).

25. Solve Exs. 1-4 by the formula of Ex. 24,

26, When does the equation of Ex. 24 reduce o an equation ofifirst

degree? Interpret geometrically. 8

[ S

'\

37. Curves through the intersections of two given
curves. Let there be given any two curvesywhose equa-
tions we will denote by N
&) u =0, 2 =0,
where ‘1 28 rp H5PERATE Pertain e i’}?s'sions* involving
and y. Suppose these curves ifitersect in certain points
Y Pl, Pg, et(;.:"'

] b We will'now consider the locus
@ &Y =0
where % is an arbitrary constant, and
'.‘m]:roceed to show that, for all values
=% "of k, this curve passes through the
points of intersection of the two given
curves. Since P, lies on the curve
u# = 0, its cobrdinates when substi-
tuted for x and y in the expression
\ no matter where z is found, wil
O Fo. a n}ak:e that quantity identically zeto,
V) - . Similarly, since P, lies on the curve
v = 0, its cobrdinates will make » vanish. Therefore,
substituting the cotrdinates of P; in (2), we get
0+ %k-0=0,

*The student should make sure that he understands the meaning of the
abbreviated notation here used. The letters u and # stand for any expressions
in x and ¥ whatsoever, not necessarily of the first or second degree.
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which is true for all values of %; hence P, lies on the curve
(2). By the same reasoning this curve passes through
all the other points of intersection of the given curves,

In summary, we have proved the

THEOREM: If 4 = O and v = O are lwo intersecting curves,
the equation A
(3) u+ kv =0, AN
where k is an arbitrery constant, represents for any vaglu’e;}jf
k a curve passing through the points of intersectionqf lhe
given curves. N

Since equation (3) contains one undetermingd constant,
the curve may be made to satisfy one condition (§,35) ;

for instance to pass through a given poil\ft r to be tangeﬁ{{

to a given line. . f!;"
When # =0, 9 = 0 are two 5%

citcles, so that # and » stand for £

two expressions of the form "

A + A1Jr'2 +Dix+ Ely“.'KFl,

At Apy? + Dox + &"F F,,

1t is easily seen that*in general

the equation 5"

@ urd=0

Is of the fotm. (1), §34, and Fic. 42

therequ:é:: represents a circle.®

Sinee'this circle must pass through the two points of inter-

Sction of the given circles, the fact that the new circle is

determined by one more condition appears independently

of the constant-counting theorem of § 35.

* There is one exceptional case; in Ex. 17 below the student is asked to dis-
cover this cage. -

_ Ttshould atso be noted that even when the given circles do not intersect, equa-
tion (4) will still be of form (1), § 34 (exeept as just remarked), and therefore will
10 general represent a circle.

n

-
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Example: Find the circle through the points of intersec-
tion of the circles x2 + ¥* = », x* + 3% = x and through
the point P : (1, §). (See Fig. 42.) :

By (4), the required equation will have the form
®) PHy-y+hE+y—2) =0 N
If this circle is to pass through (1, 1), these coo;dmates :
may be substituted for x and y:

-1+4—2+k(1+%—1)= 0
whence . .
k=—3. ,~~\‘

Substltutmg this value of % in (5), we get

- wwwda:rad_lb},ary o},g in 3(x? _!_'\ —x) =
or 21+ 2523 3x + y - 0
‘ EXERCISES

‘Find the equations of the foﬂE.{“:ing straight lines.
1. Through the mterseht.mn of the lines 3x—y+2=0x+ 2y =3

\.

and through (1, 2). A Ans. 8y =3z +13~
2. Through the\‘intersectioni of the lines 2z +3y+1=0,
6x — 5y = 3 and tiirough (- 2, — 2). T Anms, llx — 1y =8

8. Througihthe intersection of the lines of Ex. 2, and parzllel to Ox
4. Thrmé'gh" the intersection of the lines of Ex. 2, and parallel to Oy.
5. Tf{l'ough the intersection of the lines of Ex. 2, and having the

slope 2, ¢ Ans. 14z — Ty =5.
B “Through the intersection of the lines x — 3y =6, e +y =0,
aud  having the slope — 3. Ans. 39z + 13y +6 =0.

o % 7. What is represented by equation (3), § 37, when the ongmal curves
\' \dre two parallel lines?

8. If u = Orepresentsa circleand » = Orepresentsahne,Whatlsthe
locus of the equation % + kv = 0? .
Find the equations of the following circles.
8. Through the intersections of the circles 2% + 3 — % 'I'J’ =2
# 43 =5 and through (2, —2).  Aws. 22 + 92 — 35+ 3 +4=0
10. Through the intersections of the circles x +¥ = 6x -2 -1
4 3% = 4x, and through (1, 3. Ans, 522 + 5yt — 8x — 12y~ 6 =0.
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: 11. Through the intersections of the circle x* 4 y* = 25 and the line
97 — 3y = 5, and through the point (6, 2).

12. Through the intersections of the circle x? 432 +2x 4 2y = 0
and theline ¥ = x — 1, and through the point (3, 1).

13. Through the intersections of the circles x? 4+ +3x — ¥ =5,
2+ 25 — 3x - 2y =4, and having its center on the y-axis.

14. Through the intersections of the circles #? 4+ ¥* -+ x — 2y =6, \
£+ — 2 + y = 10, and having its center on the x-axis.

15. Through the intersections of the circles a? 4+ 3* = 2x, 32 - 3% = 2y,~ )
and having a radius V5,

Ans. x2 Ly —dx + 2y =0 2% + 3° + 2x — 43; =0

16. Through the intersections of the circles of Ex. 15, and havmg its
center on the line y = x. Ans. x’-by*-x+y

7. Ifu = 0, r = 0 are two non-concentric cu‘cles, whether intersect-
ing or not, prove that & + kr = O isalso, in general, a cirele.” Are there any
exceptions? - gy’ dbraulibrary org.in .

. 18, What is tepresented by it 4 kv —-Owhen\u =0, v =0 are two
ooncentnc circles?

18, If two circles # = 0, v = D are tangentioeachotheratapomt}’
prove that # + ke = O represents, in general, a circle tangent to the given
cirdes at P. Is there any exception? "

20, Prove geometrically that, whén # = 0, # = 0 are two non-con-
centric circles, the center of theéitele # + kv = 0'is on the line of centexs
of the given circles. Can the, p@of be carried out in all cases?

81, Solve Ex. 20 anal t}cally (For convenience, take the given circles
with centerson Ox. Is the proof still general?) What is the advantage of the
analytic over the geomaétric proof?’

22. Prove that'thé curve u + kv = Opassesthroughnopomtofeltl'ler
#=0orp = 0 eﬁcept the points of intersection.

2. Jequation # + k2 = 0, what happens if we substitute the
mﬁl‘dmatéé*o apomtonthecur\veu =0? Onthe curves =0?

33- Radlcal axis ; - Uommon chord. Given two circles
s .: . = 0, P = 0
we ﬁan make the coefficients of x? and y2 the same in the

u—ﬂ=0
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is of first degree and represents a straight line.* This
line is called the radical axis of the two circles.

If the circles intersect in distinct points, it follows from
the theorem of § 37 that the line (1) is the common chord,
If the circles are tangent to each other, this line is, the\

common tangent. N
¢\,

EXERCISES £\

1. Find (@) the equation of the common chord™ Qf the clrdes
B4 —6x — 8y =0,22+ 32 =9; (b) thelengthofthechord
: \ A?as (b) 2oL
2. Find (@) the equation of the comrhdn chord of the cics
2x% - 2% = g, 22 + 2+ dx — 2y 0; (b) the\lengﬂl of the chord.
. TN A, (3) VL
www . dbraulibr ar \ W .
3. Prove analytica at in general; the radical axes of three circles
taken in pairs meel in a pomt {cailed the yadical center).
4. Find the radical center, ’(Ex 3) of the circles 2232 =4
2+ =dy, 12+ 32 —6x + 83;'-1- 24 = 0, Draw the figure.
Aws. 6,1)..

5. Find the radical center (Ex 3) of the circles 22 + ¥? + 3x — 2y =4,
R+ -2~y =6, ¥ 3% = 1. Draw the figure. Anms. (—1 —3)
6. Give a geoméizic construction for the radical axis of two not-
intersecting circles, Ba\ed on the theorem of Ex. 3.
7. Prove analytlcally that the radical axis of two circles is perpen-
dicular to theirdine of centers. Hence vary the construction of Ex. 6.
8. Ir;t‘a(hat case do two circles have no radical axis?
W’mn do three non-concentric circles have no radical center?
0. Find the radical axis of two point-circles (i.e. circles of radius 0
“i1. Prove that the perpendicular hisectors of the sides of 2 triangle
~ mhet In a point. (Exs. 3, 10. )

\, ) * There is one exceptional case — see Ex. 8 bEIOW



CHAPTER VI
THE CONIC SECTIONS

39, Definitions. The path of a point which moves so
that is distance from g fixed point is in a constant ratio {6
ils distance from a fixed line is called a conic sectzon, 0r~

simply a conic. (See also § 40.)

- The fixed point is the focus of the conic, the ‘ﬁxed
lire the directrix, and the constant ratio the ecKntrzczzy

In Fig. 43, if F is the focus, » the
directrix, and P a point on the conic,
then, by the definition,

FpP

~ylorg.in
L

p = ed
where ¢ denotes the eccentrn::ty

ST =e¢ O5F 7}
LP ? ,". " r

o« J/ i

)

Equation (1) would stifi‘be true if the point P were in
the position P’, symmietric to P with respect to’the line
FM. Hence the line through the focus perpendicular
to the directrix is'ah axis of symmetry for the curve. It
follows. that_tfle line through the focus parallel to the
directrix infersects the curve in two points; the chord

©:9: joining these points is the latus rectum.

Tthomc sections fall into three classes, differing gr eatly
n  Iorim and in certain of their properties, and distinguished

by the value of ¢, as follows:

ife < 1, the conic is an ellipse *  (Fig. 50, p. 74);
if ¢ = 1, the conic is a parabola (Fig. 44, p. 65);
ife > 1, the conic is a hyperbole * (Fig. 53, - 79);
*For alternative definitions of the dlipse and hyperbola, see §§ 46, 52.

63

Q"
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40. The circle ; degenerate conics. In addition to the
three typical “conics” defined above, it will be convenient
to include under that term various other loci, some of
which do not satisfy the definition of § 39.

First, when ¢ = 0 the definition fails. But when{es
approaches 0, the ellipse becomes more and more pearly
circular; we will therefore agree to consider the cifeléas a
limiting case of the ellipse. AL

Second, for reasons both geometric and analytic, we
will agree to consider the “point-ellipse’>§48), two par-
allel or coincident lines {§ 43), and two Intersecting lines
(§ 54) as conic sections of exceptional type. These loci
are sometities ¢ARERl YogeiBrate conics.

It can be shown that every)plane section of a right

" circular cone is a curve of the' class that we have called
“conic sections” (provided'ihe forms just discussed are
included)}; this of courseils the reason for the name. The
student may amuse{himself by discovering, intuitively,
how the cutting 1;':1}18 must be passed in order to obtain |
the various sections.* |

We will alse.establish in due course the important |

THEOREl\:ﬁ An equation of the second degree represents ¢
conic section (exceptionally, no locus); and conversely.t
- The\property embodied in the theorem is sometimes
: u§ed as a definition, instead of the one given in § 39:
DA comic section is a curve whose equation is of the second
degree.
This definition automatically includes not merely the
tllljree typical conics, but also the exceptional forms listed
above.

*Two parallel lines n_abviously cannot be cut from a cone. They can, how-
ever, be cut fn_)rn @ cylinder, which is the form approached by the cone as the
vertex recedes indehnitely.

T See the footnote, p. 36.
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I. THE PARABOLA

41, First standard form. The parabola has been defined
in § 39 as the conic whose eccentricity is 1; that is,

The parabola 1s the locus of points whick are equidistant
from a fixed poini and a fixed line.

The Iine through the focus perpendicular to the direc- .
trix is called the axés of the curve. The point where thel >
axis intersects the curve, ie. the point midway between
the focus and the directrix, is the vertex of the patahola.
The (undirected) distance from the vertex to_tHe“focus
will be denoted by the letter g, so that ¢ is always\positive.

Let us take the vertex of a parabola as the.grngin and the
focus at (g, 0), where @ is any posztwv ibrifleng.in
the axis of the curve is the x-axis and™ :
the directrix is the line x = — a. If
P: (x, ) is any point on the curve,
then by the definition of the patabola

Vix —ap+ 2= a+x,
which reduces to \\
(1) y* = 4ax.

From (1) it appéars that x must be
positive, otherwme 32 would be nega- 2
tiveand y : hence the curve Fic. 44
lies entirel{ o the rlght of the y-axis. For every positive
value, Qf « there are two values of y, numerically equal
but“of’ opposite sign, which increase numerically as
x inreases: thus the curve opens indefinitely to the right.

When x = g, y =+ 2a. Hence the length of the latus
tectum is four times the distance belween the verlex and
forus. This property, being intrinsic for the parabola, is
independent of the position of the curve with reference
to the cobrdinate axes.

-
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42. Other standard forms. The equation 32 = 44y
expresses a characteristic geometric property of the
parabola — a property true for all parabolas, regardless of
their position with reference to the cordinate axes. Given

a parabola with vertex V and focus &\

(Fig. 45), let us drop from P a perpen-
dicular MP to the axis of the! Cutve,

Then by (1}, § 41, W >

(1) MP? = 4VF . VM

this is the characterlSt} property just
% mentioned.

EiadBoraulibrary Sonsider now*a\parabola with vertex
b at (ﬁg £) (Flg 2‘5) axis parallel to O,
and focus at a distance ¢ tp the right of the vertex.

Choosing a point P : (x, )" on the curve, we see by

(1) that the equation of the parabola is

(v ~ k)2 = da{x — k).

By similar argph‘lent we may obtain the equation
when the curve'spens to the left, or when it opens upward
or downward {(axis parallel to Oy). In summary, we have
the followingresults: '

The equation of a parabola with vertex at (k, k) is, if ﬂ%’ :
axis fs\pamllel to Ox and the curve opens to the right,

(2} ‘:~. (y — &) = da(x — )3 o
“3f the axis is parallel to Ox and the curse opens lo the leﬁ,

®) W~k*=—4gax—h); "

if the axis is parallel to Oy and the curve opens upward

€ (x — 1)? = ga(y = k) ;

if the axis is parallel to Oy and the curve opens downward,

) (x — h)? = — da(y — B).




§42] : OTHER STANDARD FORMS 67

EXERCISES

In the following cases, locate the vertex, the ends of the latus rectum, and
a faw other points, and trace the curve.

L =—8c 2, y* = 3x.
3. 2t =6y 4ox2 4y =0.
b4yt +a =0 8. 812 = 3y.
T+ 3 =4 — 1. 8 (v —2) =~ 12(x 1 3).
9. (v + 3¢ =— 2(x + 1). 10 (x - 12 = 1y. O\
11, {(x — 10)* = 100(y — b). . {v +6)2 =6(x — 8). l’\
Find the equations of the following parabolas ‘

13. With vertex at €, axis Ox, and passing through (3, — 2)
14. With vertex at 0, axis Oy, and passing through (—ml\zi}
16, With vertex (3, — 1) and focus {3, — 2). )
6. With vertex (— 1, — 2) and focus (— 4 g@dbraulibrary.org.in
17, With vertex {2, 4} and directrix x = 1. N "

18. With vertex (— 3, 2) and directrix -j—~i~‘= 0.

19, With focus (0, 6), axis O, and latus fectim 8. (Two answers.)

20. With focus {2; 3), axis parallel to'i)x,"and latus rectum 12.

21. With vertex on Ov, axis parallel to Ox, and passing through

(=41, (-1, — 1). Ansi(y + )t = — 4x; (v + 1) =— 4%,
22. With vertex on Ox, ams\garallel to Oy, and passing through (2, 3),
(-1,12). O Ans. (x =53 =3y (x- 1P =2
23, With vertex on the\ﬁhe = 2, axis parallel to Oy, latus rectum 6,
and passing through (0,8 Ans. (x + 6)2 =6{y — 2).
2. With axis patallel to Oz, latus rectum 1, and passing through
{64}(91)\ Ans. (v — 512 = X+ 75 92 =— (x — 10).

85, Showitdetail how to construct points of a parabola by ruler and
Compass if:&&f{}cus and directrix are given.
Solve the following problems geometrically (by ruler and €ompass).
=\ 2& Given a parabola with its vertex marked, construct the axis.
\ )21, Given a parabola with its focus, construct the directrix.
98. Given the directrix and two points of a parabola, find the focus.
: HC_‘W many solutions are there, in general? Discuss exceptional cases.
29. Given the focus and two points of a parabola, find the directrix.
3. Given the directrix, the tangent at the vertex {vertex not marked),
and ane poinit of a parabola, construct the focus.
31 Given a parabola with its vertex, find the focus.
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43. Reduction to standard form. The equation
(1) Cy’+Dx+Ey+F=0 (C =0
- can be reduced to form (2) or (3), § 42, by dividing by
C and completing the square in y; similarly the equation _
(2) Ax*+ Dx + Ey +F =0 (4 =0
can be reduced to form (4) or (5), § 42. Exception aris
when, in (1), D = O or, in (2), E = 0, in which cases the
equation represents two parallel or coincjdent lines*
or has no locus.  In summary, we have the\

THEOREM: An equation of the second degfee in which the
xy-term is missing and only one squa(e'térhz is present repre-
sents @ Purdb6Id AR A584kis parailel To a codrdinate axis
(exceptionally, two parallel or cotddent lines, or no locus).

Examples: (@)'Reduce the equation

¥ \
/ 497 24x — 129 = 15

toa standﬁr’d form, and trace the curve.

First\divide by 4:
¥ G\ ¥ —6x — 3y =13,
9} I¢ sFranspose the term in x and complete the

' \~:' square in y:

T O V-3 +s=6x+1+4
ns% or
N (y — $)? = 6(x + 1).

Hehce the vertex is at (— 1, 8) and the curve opens to
the right, with ¢ = 2.

* Geometrically, of coutse, two coincident lines canrot be distingnished from
asingle line. But for varicus reasons the terminclogy here adopted is preferable.
First, we say in algebra that when {2 — 4AF — 0, the quadratic equation
Az® -+ Dx -+ F = 0 has, not one root, but two equal roots; clearly the analo-
gous statement is that the locus of this equation is not one line bat two coinci-
dent lines. Second, if we say that the locus is a single line, then the converse
theorem of § 26, as stated, is contradicted; and that theorem cannot be stated
In any other form without obscuring the essential truth.
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(b) Find the equation of a parabola with axis parallel
to Oz and passing through (6, 1), (— 2, 3), (16, 6).
It will be most convenient to assume the equation in
form (1), taking * C = 1:
| Y+ Dx+Ey+ F=4Q. N
Substituting the cobrdinates of the given points in turn,
we obtain the following equations to determine D, E, &5
14+ 6D+ E+F =0,
9— 2D4+3E+4+F =0,
36+16D+6E + F =0. )
-The solution may be completed by the student.
' wﬁ{‘%_dbraulibl'ary.org.in
EXERCISES 2

In the following cases, reduce to a standard form, locate the vertex, the
ends of the tatus rectum, and a few other ‘Points, and trace the curve.

Ly+8 +8=0 252 — 52 +10 = 0.

Lr—~4r -4y =0 .~\’4.x2+6x—y—2=0.

b.y+5:—3y =0 m\ 8. xt —2x — ¥y = 3.

7.2x=+4x+y+s\;‘o_' 8. 3yt — 2x — 6y = 0.

5.3 42x —y £ =0. 0. 522 —6x + 2y +1=0.

1L 2 — 205 $J0* 20. 12, y* — 100x — 200y + 200 = 0.

13, 129 — 22 y = 0, 14. 822 +-x +2y =L

“15. Find the equation of a parabola with axis parallel to Ox and pass-
ing through (1, —~ 1), @, 1), 6, — 2). Ans. 4y — x + 4y +1 =0.

16, Find i with axis parallel to Oy and pass-
Jﬂﬁtlﬁﬂugh (lfhf)?((l;? gin(:,f a—p;;r.abda Ans. 7x’p— 25¢ + 6y + 12 = 0.

\ 17, Find the equation of a parabola with axis parallel to Oy and pass-
ing through: (4, 5), (— 2, 11), (— 4, 21). Ans. »# — 4x — 2y +10 =0C.

18, Find the locus of the center of a circle which is tangent o the fine
' ises through (2, 1). Ans. ¥t + 165 — 2y = 95.
N . the
#quation of a circle through (0, 5), (3, 4), tangent to
CAns. £ 4 3% = 25; (x — 60)? + (y — 180)* = (185)".

CE, the first footnote, p. 52, and the example, § 36.
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Trace the given curves, and find their points of intersection, .
X202 46x -3y F11=0, 22+ +2x—2y+1=0

21 3 4+ x —2y =0, 22 =3y

22, 22 —dx — 4y =4, 1t =4x | 4y, Ans. No intersection.

23, x2 =3y, x*=y—2.

24, 2 +-x =y, ¥+ 12x =8y. Ams. (0,0), (1, 2) twice, (— 4,131\,
TR 22 —2x by +2=0, ¥ +6x+9 +2=0. .

Ans. (1, — 1}, (2, — 2), 3, — 5), (-2 =10,

26. 5 —x—~4y+1=0, »*46x—8 +25=0 _

27. 2 —6x + 2y L2 =0, ¥ —2Zxr —dy +7 =0

28. Find the equation of a circle through the poimts of intersection
of the parabolas of Ex, 24. (See §37.) Verify bysﬁhéﬁtution that the
-circle actually passes through the points,

29 Pohveabi iibiet (e pgrgbolas of Ex, 28/

30. If four points aré common to twe, parabolas whose azes are at
right angles, prove that the four points Jiéon a circle. (Use equations {1},
(@) of §43, and see §37.) S

44. Quadratic function’s.ﬁ‘]A’ function (§ 28) of the form

Q) y =Nax® 4+ bx + ¢ (a #0)

is called a quadmtic{iénctz’m. Since this equation is of the

form (2), §43,,it(@ppears that the graph of e quadratic
Sunction is alwg}s\a parabola with vertical axis, or (§28) a
portion of such’a parabola. '

As x Cha}?ges, many functions increase to a maximum
value, déCreasing thereafter, or decrease to a minimum
and therl begin to increase. In such cases, it is usually a
problem of prime importance to determine the maximum

LOhminimum value. To solve this problem for functions in

general, the differential calculus is required; for the quad-
ratic function it may evidently be solved by merely find-
ing the vertex of the parahola (1).

Example: A ball is thrown upward with a velocity of
40 ft. per sec. (¢) Find how far it will rise. (b) If it starts
at a height of 24 ft., find when it will strike the ground.
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When a body moves in a vertical line with no force
acting except the earth’s attraction, it is shown in me-
chanics that the distance x (in feet)
fom the starting point after time [ 7> =
t {in seconds) is approximately
2) x =t — 1683,
where 2, is the initial velocity, both
yand 2, being positive upward. Take
#, = 40, and standardize (2):

- 9=~ fslx — 20
Thus the ball rises £ sec., to a height of 25 £t above the
starting point. Puttlng x=—241in (2%\1\%ﬁﬂghbrary_org.m
2 —-5—3=0, (2t + D@=3) =0,
whence the ball strikes the ground af’téf 3 sec.

B

EXERCISES

In ¢ach case draw the curve, and lIld‘lCdt& the portion that has a meaning.
1. A ball is thrown upward\wuh a velocity of 64 ft. per sec. Find

{a) how far and for how long aitne it will rise; (3) when it will be halfway
between the starting point e highest point.  Ans. (p) 0.6 sec., 3.4 sec.
23 Aball is thrown downward from a height of 10 ft., with a velocity
of 12 ft. per sec. Fmd\when it will strike the ground. Ans. 0.5 sec.
3 Exprem the\tbtal surface (including both ends) of a right circular

it"altitude, as a function of the radius.

Exn&the total surface of a right circular cone of slant height 2,

&4 f“JICtion of the radius.
*-‘N"md the radius of the cireular cross-section cut from a sphere of
$ dji-‘Sbea plane passing at a distance # from the center. Taking r = 1.
the area of the section as a function of &.
6. Express cos 20 as a function of cos . ]

. When the load is uniformly distributed horizontally, a suspension-
bndge cable hangs in a parabolic arc. If the bridge is 200 ft. long, the
towers 40 ft. high, and the cable 15 ft. above the floor of the bridge at the
midpoint, find the equation of the parabola with the midpoint of the bridge
@ arigin; also the height 50 ft. from the middle.
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=8, A rectangular lot is to be inclosed by 100 yd. of fencing. Expres
the area as a function of one of the sides, and find the dimensions of the
largest lot that can be inclosed. Ans. 25 X 25 yd,

~9. A rectangular lot is to be fenced off along the bank of a river. [t
no fence is needed along the river, find the dimensions of the largest Iot that
can be inclosed with 100 yd. of fencing. Ans. 25 X 5hy

10. A rectangular field is to be inclosed, and divided into three lots by
parallels to one of the sides. Find the dimensions of the largest field that
can be inclosed with 1000 yd. of fencing. Amns. 2505 125 yd,

11. A triangular lot has 60 ft. frontage on one street, 80 fon another
street at right angles to the first. Find the dimensions of the\largest rectan-
gular building that can be erected facing one of the stregte. (§30.)

X2, A right circular cylinder is inscribed insg’ ﬁght circular cone of
radius 4 in., altitude 12 in. Find the radius of \the cylinder if its convex
surface is a maximum. (§ 30.) \\ Ams, 2in.,

1. ‘SolyethEa tbhr ke (68 Hurface of thé Eylinder is a maximum.

14. A rectangular lot is to be fenced off along a highway. If the fence
on the highway costs $1.50 per yd., gn'\tHe other sides §1 per yd., find the
size of the largest lot that can be intlosed for $100.  Ans. 20 X 25 yd.

15. When a projectile is thr,éwn' with an initial velocity #, inclined at
an angle e to the horizontal, the equation of its path (with all resistances

.neplected) is '
o _ 16xt
‘,.\ y—xtana—_-‘;.?sec?a.

If a ball thrown from the ground with 2, = 60
ft. per sec. strikes the ground again 90 ft. away,
find e, and plot the possible paths. Find the
highest point for each value of . If the ball
I is to be caught at a height of 5 ft., where should
\ } the catcher stand?  Ans. « = 26.% or 63.°4.
JI85A projectile (see Ex. 15) thrown with initial velocity # = 64 ft.
pereec. strikes a wall at distance x = 32 ft. away. Plot ¥ as a function
. Ohtan o, What value of « gives the greatest height on the wall, and what
< ‘miaximum height is attainable? Ans. « = 76° 60 fi.

17. In the formula of Ex. 14, p. 42, with W = 2, w = 1, , = 4, plot
F as a function of 7,, What is the meaning of the /-intercept?

18. When a body is thrown vertically upward with velocity 1, the
velocity at any height x is given approximately by the formula

w” = o — Bdx,

Taking p, = 64, draw the graph of v as a function of x. Find the velocity
at a height of 48 ft. Why are there two values of #? .
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- II. THE ELLIPSE

15, Ellipse referred to its axes: first standard form. By
§39, the ellipse is the conic section for which ¢ < 1.

Let F be the focus and X the directrix. The line FM-
through the focus perpendicular to the directrix intersects
the curve in two points,* say V, V’. These points are the ;
verlices, and C, the midpoint of VV”, is the cenfer. Let usd

set })\"
CV =ua, . R
CF = ¢, v ¢ F¥O lM
CM = d. Fi6. 49

Then, applying (1), §39, to the points, Wy dtauWerHa g in
G—c=cd—a), oa+c= e(}+a)
By subtraction and addition we findy
= 2CF = Zae, "”’ CF = ae,
2ed = 2¢ - CM = 2a, CM = -
\

Let usnow (Fig. 50) take-the center at (0, 0) and focus at
F: (ge, 0), so that the directrix is the line
:".\ ‘ _a
70 =%

' M
Then, if Pﬁx, ¥) is a point on the curve, we have (§ 39)
OVETETF (3 - e

¥ = 2aex + a%? + 3* = a* — 2aex + €%,
T2l — @) + 32 = a2l — &),
- x?. . 2
O EyF o
& el — &)
* For FM can be divided both internally and externally in the ratio e.
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BlY For simplicity. let w
put

AN F, 0 . F 4, lex thus reducing equatsre
\/ } (1) to the standord form

2 A
v @ htha®
a

From (3) we see that:
{a) The curve is symmetric with respeet,to’Ox and Oy
From the latter statement it follows that\there is a sevond
focus, the point (— ae, 0), and cz\ second directnix, i
7.\
L6

line x ﬁa\ﬂﬁ\mgil braulibrary.org.in
: 4

(6) The curve intersects thé\axes at (+ g, 0), (0, * ).
(¢} The equation when selved for y has the form

@ y &Y VE =,

which shows that/4Mis imaginary when x is numerically
greater than  g¢{)Similarly, x is imaginary when y »
numerically. g}&ter than .

It is convenient occasionally to speak of the two lines of
symmetry;as the axes of the curve, but usually we shall
considétthe axes to be the segments of these lines included
Wit@in’ the curve: the segment A,4, is the major axss,
the segment B,B, the minor axis.

5T It follows from (2) that, for the ellipse, g is abicays
\J greater than b — hence the terms “major” and *“mincr.”

From equation (3), the ends of the axes may be plotted

immediately. By (2), we find

ae =Va® — 2,
so that the distance from center to foci is Vgt — B, By (4.
when
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xmae, y=rVE_gi-z?
a

2
w: that the latus rectum s %—. The ends of the latera recta

=ay then be plotted. This gives a total of eight points on
e curve, from which a fairly accurate sketch can be
sade.

1t 1 easily seen that the equation O

g W

y? x2 N
r "

¢

rrpresents the ellipse with center at the origin aﬁe\z‘ major
cits tn Oy, O

. Another definition of the ellipsd.¥ PHeBRBwHbE
aeuperty of the ellipse is often used as’a definition:

An ellipse 1s the locus of a point which moves so that the
cam of its distances from two fixed points is constani. The -
%wed points are the foci; the gonstant sum is the major
(41 N X

ol

Let the foci be F, : (aec®) F. : (— ae, 0), the directrices
&
:-ez:,and P:({\y) any ¢ p

prant of an ellipsés By (1), § 39, //i '
FPwe q'ﬁ:"\x)=a—ex —%

F O F

F.P .g?t(: + x) = a -+ ex,

") F.P + F.P = 2a. Fic. 51 _
To complete the proof of equivalence of the two defini-
1y, it must be shown that, when a point moves so that
she sum of its distances from two fixed point's is constant,
s bcus is an ellipse as defined in § 39. This part of the
ool will be left to the student (cf. Ex. 15, p. 28).
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EXERCISES

Tn Exs. 1-6, find the center and foci, plot the ends of the axes and of the
latera recta, and draw the curve. Find the eccentricity and the directrices,

- X y’= 2oy
1 g tig = 100+36 _
xRy 202
_.3,2+3 1. 4.9+12 L '\?\
6. 327 4+ 52 = 15. 6. 4x2 424t =0, N\

Fmd the equations of the following ellipses, assummg form (3}, §45,
7. Major axis 9, distance between foci 8.
8. Latus rectum 4, distance between foci 4 V2 ‘A:zs A=k
9. Eccentricity 1, distance between foci 1, Ans, 322 + 42 =3
10. Distance between foci 8V/6, rectangLerﬁ the axes of area 80,
L Ecaentigiby g ractum §. LY Ans. 2522 + 45yt =6,
12. Distance between foci 2, between directrices 8.
-13. Passing through (4, 3), (6, 2. . Ans. 22 + 492 =52
14, Passing through (1, 2}, (3 1) . Ans. 328+ 82 = 35,
-156. Passing throu.gh {2, 33, Iatus rectum three times the distance from
oenter to focus, - .. . Ans. 312 + 4y = 48
16, Distance betwew the dlrectnoes 2V/21, the rectangle on the axas
ofareaﬂv’7 Ans. At + Tyt =4, 22+ T2 =
. Latus recthq}%g. distance between directrices 2v/19.
Ans, 1527 + 1992 = 60; 1027 4 1992 =N
18, Dlstaqce between foci $V/33, passing through (2, 1).
Aps. xt + 12y = 16,
19. vae that as e approaches 0, the ellipse approaches the circle asa

Jorm. (Let ¢ approach Oin (1), § 45. As this happens, how do the
focus directrix move?)

390, A line segment of fized length moves with its ends following two

perpmdlcular lines. The line is divided by a pomt P into two segments of
’lengths @, k. Find the locus of P. © Ans.- An ellipse.

21. A point moves so that the sum of its distances from (6,0}, (— 6.0)
is 16. Find the equation of its lcucus in two ways (§§ 20, 46). Draw the
curve, :

22. A point moves so that the sum of its distances from (0, 2), {0, — 9
is 6. Find the equation of its locus in two ways, and draw the curve.
1—31*{-:;&3 A circle is tangent to the circle (x +1)2 + 32 =9, and passs

ugh (1, 0). Find the locus of its center, Ans. 2022 + 365 = £.
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uﬁmmng'cn'de is tangent-to the fixed circles (x — €} + 3* = ¢2,
{x+e:)=+y'=lﬁc‘I Find the locus of its center.
Ans. B4zt + 1009 = 525¢%; 2027 4 36y = 45::*

" 85 A moving circle is tangent to the fixed circles »2 + (y — 2c)? =

£+ (v + 20)* = 25¢%. Find the locus of its center. Draw the figure.
Solve the following problems by ruler and compass.

28, Given an ellipse with its center, construct the axes.

87. Given an ellipse with its axes, construct the foci.

28, Given an ellipse with its axes, construct the directrices.

28, Given the foci and major axis of an ellipse, show how to constm;:t
points of the curve by ruler and compass. (§ 46.)

30, Given the foci and one point of an ellipse, construct tlm‘axes

31. Given the foci and minor axis of an ellipse, construct the major axs,

3. Given one focus, the direction of the major axis, aﬁ the lengths of

N

L X
2N\

'\

both azes, construct the other focus. WW"“' braulibrary.org.in

47. Other standard forms. By a method similar to
that of § 42, we may establish the following results:

The equation of an ellipse with. center at (h, k) is, if the
major axis is parallel to Oz, :

v ERL ;W 1 (a>b)
if the majmr axis is pam\lnbl to Oy,
o (”ak)2+(""’)2 (a>b)

18, Redu on to standard form. Given the equation
M Ly x2+Cy*+Dx+Ey+F =0,
where dand € have the same sign, it is easily seen that, by
eipleting the squares in x and v, the equation can in
getteral be: uced: to one of the standard forms of §47.
There o-éxceptional cases: When the left member is
written'as the suim of two squares, the right member may
beo wegative. In the former case the locus
single point (%, k), — the so-called “point-
tter case there is no locus. Hence the
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THEOREM: An equation of the second degree in which the
xy-term 15 missing and the coefficients of x* and ¥ have ihe
same sign represenis an ellipse with axes parallel io ihe
codrdinate axes (exceptionally, a single point, or no locus).

Example: Trace the curve s O\
9x? 4- 4y? — 36x + 8y + 31L=\20
¥ _— 2D
[ )\‘ » lranspose the constant.and’com-
plete the squares: 4>

9(x2—4x+4)+4(y2+2y+1)

=T 3143644,
/e 2ty + 11 -9
www.d ibrary.org.in  (x —:2}‘2'—‘_ (y 4+ 1)? -1
- Fie. 52 R g -

The center is at (2, — 1)/fomajor axis parallel to O,
semi-axes ¢ = 4, b = 1 tdistance from center to foci

2
Ve — bt =v3 = 1\/3‘ latusrectumz’bl =4

\ EXERCISES

In each of the oQowmg cases, find the center and foci, plot the ends of
the axes and ofithéMatera recta, and draw the curve.

Lo SRCED SN TS L

x

N — 1y x — 62 — 42

‘gl\g_}_(ylz)_ll 4-( 8)_}_.@.'_12_)—1

8. 22 1332 4 61+ 6 =0, 6. 21 +2" —2r —4y =1

LN T8 by — 16242y =0, 8 20 432 4 8r4dy =0,
\/ 9. dx® + 3% = dey, aened D, 2% 4 By = 10cy.

N/ 11 422 4 5p2 4 16x — 20y + 31 — 0.
| Ans, G2 022 2,

12, 7a% 4 87 — 28x 4 80y - 172 = 0, !
13, 722 4 29° — 28¢ - dy + 16 — O, -

Aps, (--——x'£2)=+£t!.;—l‘)f=l‘
14, 3x - Tyt — 12x + 28y 19 — 0.
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111. THE HYPERBOLA

19, Hyperbola referred to its axes: first standard form.
By § 39, the hyperbola is the conic for which ¢ > 1.

The derivation of (1), §45, does not depend upon
the fact that e < 1; thus we know at once that, with the
axes chosen as in § 45, the equation of the hyperbola is -

xﬂ + yZ

O Fteg-—e !

But, since now ¢ > 1, the con-
stant ¢2(1 — ¢%) is negative; there-
fore to make b real, we set

2 b= ae® — 1),

and write (1) in the form

°_ ¥ .

(3) Ez—gg——' 1- v::':

This equation shows that:

(@) The curve is synmgetric

with respect to both axess Tence there are two foci, the
points (4 ae, 0), and\t\wb directrices, the lines x = £ ‘—;.

{b) The curve. @éi‘o"sses Ox at (+ @, 0); the intersections
with Oy are irfdginary. _

(€ Thf;\\e@ﬁzition when solved for ¥ has the form
O y =+ VP =@,

s

Shich shows that y is imaginary if and only if 22 < &% 1.8
if — g < x < a The curve therefore consists of two dis-
connected branches, one lying to the right of the line
x = g, the other to the left of the linex =— a.

: v
{d) The latus rectum s 23__
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As in the case of the ellipse, the lines of symmetry are
sometimes spoken of as the axes of the curve, but unles
the contrary is indicated the axes will be considered to be
the segments A,A, of length 2¢ and B.B, of length 2b: the
former is the fransverse axis, the latter the conjugate auii \
The conjugate axis does not intersect the curvesbit
plays an important part in its theory. The endsdy, 41 of
the transverse axis are the verfices; the point of intersec-
tion of the axes is the center. 7\

It appears from (2) that the distancefrom the center i
the foct is

(5) o ge=va +.A |
www.dbraulibrary.org.in R &
It should also be noted thatis, the case of the hyperhola
b may be greater than, equal {0y0r less than e, according to
the value of e. N
It is easily seen that_the equation
N '2' 2 .
6 NY X
(6) Rl = 1
represents a hfperbola with transverse axss in 0y.

50. Asympf:otes. When the standard hyperbola

(1) \~:~\ Y
and the straight line
@) bx —ay =0

~ are'drawn on the same axes, the figure indicates that the

(“\hyperbola approaches the straight line more and more

closely as the distance from the center increases, but with-

out ever reaching the line. To prove this, let P : (¥, 3.) be

a point on the hyperbola in the first or third quadrant.
The distance from P to the line (2)is (§32)

(3) d = 0% — ays
Vg pr
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Since P is on the curve, its cobrdinates satisfy (1):
B — a®yit = a’b?,
or '
(br, — ayr}(bx: + ayy) = &%,

whence " b
___ @ &
bxq ay, = bz, + an
Sibstituting this value of bx; — a3
in (3), we find ] @
ab? 1 '

K16 54

d= . .
@ + b bx1 + 4y ww%hb}‘aulibrar“y org.in

Evidently d can never equal 0, but as\P)recedes, so that
%y, ¥, both increase numerically without limit, d becomes
smaller and smaller, approaching the limit O.

A similar result is easily established for the line
(4) by +ay =0
when P lies in the secondor fourth quadrant.

The lines (2) and. @\)\.\dr as usually written,

® 22 y=ilx

are called “gz‘a\symptotes* of the hyperbola. They are of
great imyfortance both in tracing the curve and in study-
- ing its Properties. _ '
“Frem (5) we derive the following result, which gives a
venient . method for drawing the asymptotes of any
hyperbola whose axes are given:
The asymplotes of a hyperbola are the diagonal lines of the
tectangle whose center is the center of the curve and whose sides

are parallel and equal io the axes of the curve.

¥ A peneral definition of this term will be given in § 64.
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To trace a hyperbola whose equation is in a standard
form, we plot the vertices and the ends of the latera recta, and
draw the asymplotes. These data suffice for a fairly satis-
factory sketch; if greater accuracy is required, more
points must be plotted. Q.

51. Equilateral, or rectangular, hyperbola. T];e’ﬁyper-
bola for which ¢ and b are equal is called, on ageount of
the equality of the semi-axes, the eguilaierai\hyperhola.
Since the rectangle of Fig, 54 is in this cdse’a square, the
asymptotes of the equilateral hyperboliare at right angles:
for this reason it is also called theectangular hyperbola
Sincewged eml e at-y B gthe eccentg’iﬁity of the equilateral
hyperbola is e = V2,

When the hyperbola is gciuﬂateral_, equations (3) and
(6) of § 49 evidently assuine the respective forms-

.’x:?:; ¥ = a,
. gz — x2 = g2

. b2, Another&h{léﬁ\nition of the hyperbola. A property
frequently used as a definstion of the curve
is as follows cf. §46):

A kypeigola is the locus of a point which moves so that the
differenée of its distances from two fixed points is constant.
ThefiXed points are the foci and the copstant difference is
the transverse axis.

O That is, in Fig. 53, p. 79, =
(D F.P — F\P = 2a.

The proof may be carried out by the student.

EXERCISES

Locate the center, vertices, foci, and ends of the latera rects, draw the
asymptot?‘s’ and trace the curve. Determine the eccentricity and writ¢
the equations of the directrices and asymptotes,
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g. ¥ 9, X _ ¥
LeteTh ‘4 B L
SN e R
3 9 16 4 G 3 1
£ _¥ ¥
TR 1 T2 4
Find the equations of the following hyperbelas, assuming the center at ¢
and transverse axis along Ox. A
7. Latus rectumn 36, distance between foci 24. A#ns. 3a% — 3% = 1Q8: ’
8. Eccentricity 22 latus rectum 6. Ans. 4922 — A0,
9, Distance between foci 6, distance between directrices 4, :
10. Passing through (2, 1), (4, 3). Ans. 267> 3y = 5.

1i. Latus rectum 4, slope of asymptotes L 3. Ansx* — 9y = 36.
i S 2 L J—
12. Foci (& 4, 0, slope of asymptotes i’ 3 w }:{‘g:sd\[jmxu ljblisgry.oggfm
13, Latus rectum 18, distance between directziCes 3.
. _ CNY Aps, 3x2 -2 =27,
14. Latus recturn 3, distance between diregtrices 42.
. W Ans. 91 — 16y = 144,
16. Distance between directrices 13 i’];[e’ rectangle on the axzes of area 2,
~n T Ans. 2xt =2y = 1.
16. Draw the graph of secx&'&% a function of tan &.
.11, Givena hyperbola WQQM’LS axes, draw the asymptotes and find the
foci geometr_ically. N
18, Given a hyperlbﬁla with its axes, find the directrices.
19. Prove ana]{tj,c:aﬂy that a line parallel to an asymptote of 2 hyper-
bola intersects the &iirve in one and only one point., ’
20. Prov%mzlytically that the preduct of the distances of any point
of 2 hyperbota from its asymptotes is constant.
miril\'A'point moves so that the product of its distances from two inter-
B%Eh?g“lines is constant. Prove that its locus iz a hyperbola having the
given lines as asymptotes. (Take thelines y = & mx. Is the proof general ?)
22. A point moves so that the difference of its distances from (3, 0},
(=3,0)is 2. Find the equation of its locus in two ways. (§§ 20, 52.)
93. A point moves so that the difference of its distances from (©, 4).
{0, — ) is 6, Find the equation of its locus in two ways.
24, A cirdle is tangent to the circle a? + 3? -+ 2cx =0 and passes
through (¢, 0). Find the locus of its center. Ans. 1258 — 437 = 3%
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26. A circle passes through a given point and is tangent to a given -
circle. Find the locus of its center, for all possible cases. (§§ 486, 52.)

26. A moving circle is tangent externzily to the two fized circle
(x —20)2 + 3% = % (x + 2¢)% + ¥* = 4c® Find the locus of its center.

Ans, 6032 — 492 = 15¢

27. Given the foci and transverse axis of a hyperbola, show how to
construct points of the curve by ruler and compass. (§52.) - 0 &N

28. Given the foci and one point of a hyperbola, construct the azés.

29. Given the foci and asymptotes of a hypetbols, find thevérﬁbe&

30. The sound of a gun and the ring of the ball on the target are heard
simultaneously at a point 2. What is the locus of P? K ..}"_

31. Prove equation (1), § 52. >

53. Other standard forms. Formulas for the hyperbola
analogous Eo tPﬁ)Sﬁ )Qf 47 for the ellipse are as follows:

The equation of ky erbola wzt{ denter at (h, ) is, if the
iransverse axis is parallel o Oz,

(x—m? _ (y —k? _
& a W b? 1;
if the iransverse axis i&pamﬂel o Oy,
(AR (x—h)?
@ Gohy Gy

The proof 1S\IEft to the student.

54. Redugtion to standard form. The equation

1) o AP+ Cy+Dx+ Ey+F =0,

whexq A and C have opposite signs, can evidently be re-

duced, by completing the squares in x and ¥, to one of the

~Aprms (1) (2) of § 53. The only exceptional case is the one
Vin which, when the left member has been expressed as the

difference of two squares, the right member reduces to 0:

-1 =k _,
a’ B
This equation can be factored, and therefore represents
two straight lines, intersecting at (%, ). Hence the
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THEOREM: An equation of the second degree in which the
sy-derm is missing and the coefficients of x* and y* have unlike
signs represents @ hyperbola with its axes parallel {o the co-
ordinate axes (exceptionally, two interseciing lines).

- Example: Trace the curve y ~
-2+ dx+4y+4=0 \*7‘/ A

‘Completing the squares in " N
zand y, we get . ~\
k+2r—200 —1)2=-2, N o,

or, dividing by — 2, /-F?‘\\

G-1p _ x+2)?_ Y
- 9 =1 wwslﬁﬁsallibrary,org,jn

1 .
This is a hyperbola with center at (— 2,¥) and transverse
axis parallel to Oy; the semi-axes arel\@ = 1, b = /2. The
vertices are at the distance 1the foci at the distance
Ve LB =+/3, above and below the center. The latus
rectum is %;E = 4, so that Qie ends of the latera recta are
at the distance 2 to ngh‘s 4nd left of the foci. The asymp-
totes are the diagonals of the rectangle of sides 24, 2b.

2
N EXERCISES

Locate the t\er, vertices, foci, and ends of the latera recta, draw the- -
asympiotesand trace the curve.

PTG Al § LA TR € Sl 3 SR S
{54 8 3 1

ROCES R L
o I : © 36 4
B. bz — dy? = 20x -} 24y + 36. Ans. & I - 45_ L=t
— 3y -2 _
6. 922 — 16y® = 36x — 96y - 36. Am-(y—'g,—)'“(xm =1

TP -pt6z+2+10=0. Ans.(ygl)z—(ic-_;—:ﬂf=1-

v .
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.21~ 2 +x—y—1=0 Ans, EED O+
3 ¥
9, 22— 29 +ay=0. 10, 4x2 — 32 — 2ax = 0.
;‘11.4y3=x2—-3x+4. 12, 22 — 4y* + dax — 8ay = 0.
13, 342 — 432 +6x + 6y =0, 14, 402 - 457 + 43 — 8y = 1.
16. a2 — 4y 4+ 2x 4 8y = 3. 16, 1622 — 3t — dx -+ y — 6 =00\
17. Show that if € = — A, equation (1) of § 54 represents an%m '
lateral hyperbola {§ 51).
Trace the following r:urves, and find their points of mtersec:tlou}
T18, a2 — 9yt — 3x — 18y — 17 =0, x+3y+2—(§”«
19. 42 — 2 —Bx — 2y — 1 =0, 2x —y =3 'O
20,2 — 2+ 3x—y4-8=0, xz--y’—i—é%\iy—l—m 0.
Ans( 2,2}, (1, 3).
21 whwdl b ats| Borratr B Bne= 0, 22 — ym}zx_el Ans. (~4,2).

22. x* — Y+ 20+ 4y =7, 2% — y2+\4x+4y—1
Aps. (— 32}twme.



CHAPTER VII

" COORDINATE TRANSFORMATIONS
55. Translation of axes. We have had many illustra-

tions of the fact that a problem may be greatly simplified A

by taking the axes in a convenient position. It may
happen, however, that the position of the axes is pre-
determined by the statement of the problem; it js.then
desirable that we have methods for shifting theleXes to
some more suitable position. Such methodi{will ‘now be
developed. ) WW\»\:";(;.]_\ aulibrary.org.in
Consider first the franslation of axes;jnwhich the axes
are moved parallel to their original pogitions. Let Oz, Oy
he the original axes, 0'x’, 0’y thepew, and suppose the
new origin 0’ to be the point (h, &Y referred to the old axes.
If we denote by (x, ) the codrdinates of any point P in
the original system, by (x’, @) the codrdinates of the same
point in the new systemythen

. y . ,yf

it appears from _theﬁguﬁ hat r

the two setsof cogrdinates are y’[ T

connected by fd;\& formulas = = | z!
1 x{‘*’ + hy k I

( ) . ’{y\_ yr + k' = i —
Ariftportant problem is, k" >

being given the equationof a Fic. 56

curve referred to any set of axes, to derive its equation
referred to parallel axes (i.e. axes parallel to the original
ones) through a point (%, k) as new origin. To do this, we
have terely to replace x and y in the equation of the cutve
by their values as given by (1).

_ 87

Q"
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Example: Obtain the equation of the circle
24+ —4dx+6y=0

referred to parallel axes through (2, — 3) as new origin.

Substitute x = x' + 2, y=y -3 '
x’2+4x’+4+y’2—6y’+9—4x’-—8+6y’—18:-0.
which reduces to x2 4+ y2 = 13. R\,

56. Rotation of axes. Let Ox, Oy and 0x’, Oy"be two
pairs of Cartesian axes with the same originjand denote
by ¢ the angle through which the first paiv must be ro-
tated to come lo coincidence with the second, the angle ¢
being considered positive when nkeasured counlerclock-
wise. ‘Lt PHAVEEHE Cdbitlinates ¥y in the first system
and z’, ¥ in the second, so that\’

N\

Y A\ OM =z MPw=y,
WY OM' =23, MPm=y.
P -\ Now
~ _,;.f’ OM = ON bt MN
s T2 = ON — QM";
; L MP = MQ + QP
i) BL N % = NM' + QP.
EXG.,57 We thus have the formulas

(1) ’“.‘v {x = x"cos¢ — y’ sin g,
AL ¥ = x"sin¢ + y’ cos ¢.

- Béth in translation and in rotation of axes the original
__¢Coordinates x, y are replaced by expressions of the fird
'@ "degret{ in &', ¥": from this it follows that fhe degres of &
equation is unchanged by translation or rolation of axes.

Example: By rotating the axes through an angle ¢ such
that tan ¢ = — 2, prove that the equation

@) Bx+4y)' 4+ 52 =0
represents a parahbola.
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Wesee from the figure that cos ¢ = — 2,
sing = 3, Substituting in (1), we get M
== -, y=8 -4

_41

These values substituted for x and ¥ in
(2) give Fic. 58

(=37 — ' + 382" — 3y —dr' =By =0, (D
o \ o

D
N

25y — 4x’ — 3y’ = 0, P\
which by (1), § 43, is the equation of a parabelay"

7. Combined translation and rotaﬁ%;,_\}‘g}guf%%gl%ls_ "
of §§ 55-56 taken together enable us to-change the axes
from any position Ox, Oy 1o any Other position O'x,
0y'. For we can first translate the “axes to a parallel
position with O as new origingiand then rotate them
through the angle necessary tg:bring them to the desired
position. .

An important consequesice of the above remark is the
following : N\

In investigating the purely geomelric properties of any
plane figure,* watiay without loss of generality place the
figure in anxgsonvenient position with reference lo the
codrdinate wges.{

Thus, f,br\instanoe, to prove the theorem of Ex. 20, p. 83,

AN . 2 ¥
iowg:ll hyperbolas, we may use the equation i i
(not, however, x2 — ¥ = a?).

*By this is meant, of course, those properties which are intrinsic in the
figure, and are therefore unaffected by its position with reference to the axes —
eg. the ty of any triangle that its medians intersect in a trisection point.

t1n § 11 this principle was assumed as intuitively evident, wnthout_formal
peoof, and has since been tacitly employed from time to time — e.g. in Exs.
19-20, p. 83. ’



90 COORDINATE TRANSFORMATIONS  [Ch. VII

EXERCISES

1. Find the cobrdinates of the points (3, 4), {5, — 8), (0, 2) referred to
parallel axes through (3, — 1). Check by plotting.

2. Find the cobrdinates of the points (I, — 3), (6,2}, (0, — 5) referred
to parallel axes through (5, — 3). Check by plotting.

3. InExs. &, 10, 12, p. 67, obtain the equation of the parabola referred O
o parallel axes through its vertex,

4. In Exs. 2,4, 12, p, 78, obtain the equation of the elllpse reTéIred
to parallel axes through its center. \.

6. In Exs. 2, 4, 6, p. 85, obtain the equation of the Ilyperhola referred
to parallel axes through its center.

6. Refer the curve y = x% — 622 - 12x — 5 toy Il?a}allel axes through
2, 3) Plot the curve on the new axes,

A tmnslatien, qiagﬁ lrﬁmove the temts .of first degree from the
equatxon af =4yt |2y 0. (Substthte x=x+hy=y+kh
then equate to O the coefficients of the ﬁrst degree terme in x’ and 3"}

9 Ans. 4p? — x% =13
8. Solve Ex. 7 for the hyperbala. Sx“ —dy? —20x — 24y — 36 =0.
g Ans. D't — 4y" = 20.
9, By rotating the azes tﬁmugh 45°, prove that: '
The equation 2xy = a* rgPresenis an equilateral hyperbola asymplotic lo
the covrdinate axes. n\ .
£ )
- 10. By rotatin%\éle axes through 45° prove that the curve
2+ xy + 92 =14 ellipse. .
11. By rotatihg the axes through an angle ¢ such that tan ¢ =2,
prove that the'siirve 442 — dxy + 32 + x + 2y = 0 is a parabola.
12, By ?otatmg the azes through an angle ¢ such that tan ¢ =3,
prove that the curve 4x? — Jxy = ¥ is a hyperbola.
TN
) AN e

\V



CHAPTER VIII

THE -GENERAL EQUATION OF SECOND DEGREE

N
58. Removal of the product term. The most general
equation of the second degree has the form & O
) A2+ By +C@+Dx+Ey+F=0 >

- The results of §§ 43, 48, 54 show that when B0 this
equation (if it has any locus at all) always rei)resents a
conic section, and it is reasonable to expecirhatithe '
will be true in case B > 0. This will be an.established fact
if we can show that by a translation- br rotation of axes
(8§ b5, 56) the term in xy can alw,’;mfs be removed from
equation (1). The transfor- ,f \
mation to be used is sug~d
gested by the following line &f
thought: If a conic lies{with
its axes inclined to th€eoordi-
nate axes, as in F\Q 59, we
can always rotate the axes
through an angle ¢ (§ 56) to
the position0z’, Oy’ parallel
to the axes of the curve, and
we kelow that when this has been done the equation of the

coflie must be free of the product term. Hence, substitute

for x and y in (1) the values given by (1), § 56:

A{x' cosp — ¥’ sin ¢)?
2) + B{x' cos¢ — ¥ sing)(x’ sing + ¥ cos¢)
4 C(¢’' sin¢ + ¥’ cos ¢)? + D(x’ cos¢ — ¥ sing)
+ E(x' siné + ¥’ cos¢) + F = 0.
. _ 91

[

O
FiG, 59
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This equation will not contain the term in x'y’ if we equate
the coefficient of that term to 0 and determine ¢ from the
resulting formula. Upon expanding and collecting terms,
it appears that this gives
2A sin ¢ cos¢ — 2Csin ¢ cos ¢ — B cost¢ + Bsin?¢ = (,
which may be written .
(3) (A — C)2singcose = Blcosts — sin? g)2
By the double-angle formulas of trigonometry,.(3) becomtes
(4) (4 — C) sin 2¢ = B cos 20
or*

B

(B} ww dbraulibrary.orfim 2¢ = m

Now for every possible vahjel o} tan 2¢, from —o0 to
+ o0, there is a value of 2¢ between 0 and r, hence a value
of ¢ between 0 and 3, $O0° ‘that it is always possible to
determine a positive acute angle ¢ satisfying (4). If the
curve (1) be referred t8 axes making this angle with the
original ones, the\resultmg equation will be free of the
product term, \amd its locus must be a conic. Hence the

THEOREM: Every equation of the second degree (if it hasa
locus) repiesents a conic section, whose axes are inclined lo
the codrdinaie axes at the positive acule anglet ¢ given by
form\ula (B), o1, if A = C, B = 0, at an angle of 45°.

Thus to trace the locus of any equation of the form (1),
~the first step is to determine tan 2 by (5), next to find
“5 c0s 2¢ from a triangle (cf. the example, § 56), and then
fo obtain cos ¢ and sin ¢ by the formulas

*Formula (5) fails if A = C, Butif A = €, B # 0, then ¢ = 45° for (§)
gives co5 2¢ =0, 24 = 90°, If A = C, B = 0, then (4) is true for all values of
@, which is to be expected. Why ?

T There are of course infinitely many other values of ¢, differing from this one
by muitiples of }x, but for definiteness we will agree to choose always the

. positive acute angle.
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(6) cosd = d-——"’?';ﬁ, sin ¢ = ‘\‘ﬁ.

The values of cos¢ and sin ¢, when substituted in (1),
§ 56, give us the expressions for x and y in terms of the new
cobrdinates. Substituting these expressions in the original
equation, we have the equation of the curve referred to.{
the new axes. This equation will contain no xy-term,,

that we may employ the methods of §§ 43, 48, b4., A\

Example: Trace the curve ~
(1) 9xt — 24xy + 16y* — 18x — 101y P
+ 19 =9
Here we have )
— 94 3 % W\.:f'\ni\d’brauhl:ralg Lorfg.in
tan2=g"76 ~ 7' \° Ve
whence A\
’ C032¢ = a:g:“
and by (6), 24
. cwsp =4, sng=% 7
Thus by § 56, FIG. 60

x = &(4::"\"%*\33*'). y = 33" + &)
In terms of therkw codrdinates equation (7) becomes
4N 25y — T8z’ — 70y +19 =0,

or, in the standard form,

(& — 8 =3+ 8-
This is 2 parabola with axis parallel
to Ox’, opening in the positive direc-
tion, and with its vertex at the point
(— 4, §) referred to the new axes.
The x’-axis has a slope tan¢ = 2;
after drawing the new axes the curve
is traced as in Fig. 61.
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EXERCISES

Remove the xy-term by rotation of axes, reduce the resulting eymtar «
a standard form, and trace the curve on the new axes.

Ioxy =2, 2.2y +8=0.
3, 5x — Gxy + 5yt = 8. Ans, x5 4p7 - ¢
4, 232 4 Zxy 4+ 292 = 3, Ans, 317 - 3770
6. 22+ 6xy +3248=0. Am.y"-;x\t<a
6 322 —I0xy + 32+ 32 =0. Ans, 11 =y <
T Taf L 12xy — 2yt =100 Ans. gxf"‘—- -
8. 4112 — Bdxy + Tyt = 208. Ans, QW Ny -
9. 19x% 4 6xy + 115 = 20, AR 27 ey -
10, 4xy — 3y = 8. NoAns, x7 - 4y - ¢
oAk, 22 + 3xy + 5y = 22, O Ans. U174 3% - it
ingy draulfBreryorg i O dns, 1y - 20 -

18. 9x2 4 24xy + 16y + 90x — L300\= 0. Ans. 57 =2 - F4

14, 1122 ~ 24xy + 492 + 62 + 8R 3 10. Ans. 47 = (v - 1Y - ©

15. Represent tan (¢ + 45°) a%-a ‘function of tan 8. (Expart by =
addition formula; put tan 8 = xpdan (8 + 45°) = y.)

16. Draw a curve from which sin (8 -+ 60°) may be read off if uz s =
given. (Note the suggestion in Ex. 15.)

17. For the Ievermu(‘Ex. 13, p. 42, if a weight of 5 Iba. is placed $ 2
from the fulcrum, angd ¥f the lever weighs 14 Ibs. per ft., draw the gt
af Fasa functjoﬂ\@ﬁ {. Estimate roughly the most advantagrous bregtt
of lever to use. A

18. For filia“lever of Ex. 14, p, 42, if 2 weight of 6 Tba. is 4 . froen e
fulcrum, agdyf the lever weighs 12 oz. per ft., graph F as a function of i.
What is the best length of lever to use? Does the graph have a meanont
in the{fourth quadrant?

R G, Prove that if a line is parallel to the axis of a parabola, it interawt:
the curve in one and only one point.

) 90. Prove that the equation x/2 + ¥ = + g'” represents a parsbols.

X

3 “and trace the curve.



CHAPTER IX
TARGENTS AND NORMALS

#. Tangents to plane curves. A straight line that inter- A
s 2 e in two or more distinct points is called a\ =
scanl, . N

Lat P be a fixed point of a plane curve, and P’ a néigh-
hrgpoint. If P’ be made to approach P WJB}%M%_OT i
te secant PP’ evidently approaches, in general, a’definite '
kmiting position, the line PT in the figure, <Tlie line thus
w is called the O\ ¢ :
imgeed o the curve ai P,
o swmid to touch the curve
« P. The point P is the

The slope of @ curve at”
my point i defined as the
dope of the tongent af that
pint. Two curyes-inter-  Fo. 62
weting i a point P are said
Wi daggant-d P if they have the same slope —ie. if
Oey bavea common tangent — at that point.

_ Indementary geometry a tangent to a circle is usually
{&med 8 5 line which intersects the circle in one point.
Sacha definition would not hold for curves in general, as i
show by Fig. 61, where the line QR is both a secant and a
bageat. (See also Ex. 19, p. 83, and Ex. 19, p. 94) The
defaition given above holds in general.

& o5
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EXERCISES

Remove the xy-term by rotation of axes, reduce the resulting equation to
a standard form, and trace the curve on the new axes.

1 xy =2. 2 xy+8=0
3. 5x% — Bxy + 2 = 8. : Ans. 2% + 4y =4,
4. 24% + 2xy 297 = 3. Ans, 31 4yt 23
5. 22 +6xy + 3 +8 =0. Ans. y? — 2 %1,
6. 3x — 10xy -+ 32 + 32 =0, Ans. ¥ ~2y* =16,
7. 7at + 12xy — 2yt = 10. Ans. 24% — y* =2,
8, 41x* — Bdxy + 7632 = 208. Ansas + 8y = 16.
9, 19x + 6xy + 11y* = 20, s 22 4y = 2.
10. 4xy — 3y = 8. Ans., 2% — 492 =8
11 2 yrgypdingpdibrapy.org.in S Ans. 1137 37 =4,
12. Tx® — 12xy 4 292 = 44, WAV Ans, 11y — 227 = 44

13. 2% + 24xy + 167 + 90x — 1300 0. Ans. 3" — 22’ =6y

14, 112 — 24ay + 492 + 62 1+ 8k =10, Ans. 49% — (¢ — I =1

16. Represent tan {¢ -+ 45°) a@{ % function of tan 8. (Expand by the
addition formula; put tan ¢ = zitan (¢ + 45°) = y.)

16. Draw a curve from which sin (0 4 60°) may be read off if sin 4 is
given. (Note the suggesti{n n Ex. 15.}

17. For the lever of Ex. 13, p. 42, if a weight of 5 lbs. is placed 5 ft.
from the fulerum, aﬁq\if’ the Tever weighs 13 1lbs. per ft., draw the graph
af F as a functiog™ef /. Estimate roughly the most advantageous length
of lever to use. \ "l

18. For, thd Jever of Ex. 14, p. 42, if a weight of 6 Ibs. is 4 ft. from the
fulcrum,.a,ggfif the lever weighs 12 oz. per ft., graph F as a function of [
What Is %he best length of lever to use? Does the graph have a meaning
in the fourth quadrant?

. \»{IB Prove that if a line is parallel to the axis of a parabola, it intersects
»1he curve in one and only one point.
\ /20, Prove that the equation 212 & y'/2 = 4 ¢/2 represents a parabola,
and trace the curve.



CHAPTER IX

TANGENTS AND NORMALS .
¢(\N
59, Tangents to plane curves. A straight line that intér-
sects a curve in two or more distinct points is galled a
secant, AD
Let P be a fixed point of a plane curve, and’}”\ a neigh-
boring point. If P’ be made to approack-F aleng m%%ylgm
the secant PP’ evidently approaches, in g&feral, a definite
limiting position, the line PT in the figtwe. The line thus
approached is called the O -'
langent to the curve af P,
or is said to touch the curve 3%
@ P. The point P is the™\"
point of contact. RS
The slope of a cu@e.’at
any point is deﬁned\as the
slope of the tangemp-at that
point. Two curves inter- FIG. 62
secting in apoéint P are said o
fo be ta@éﬁi al P if they have the same slope —i.e. if
they have a common tangent — at that point.

JIfi tlementary geometry a tangent to a circle is usuglly
defined as a line which intersects the circle in one point.
Such a definition would not hold for curves in general, as is
shown by Fig. 61, where the line QR is both a secant and a
tangent. (See also Ex. 19, p. 83, and Ex. 19, p. 94.) The
definition given above holds in general.

95
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A line perpendicular to the tangent at a point of a curve
is called the normal to the curve at that point.

To determine the slope of a curve at a given point,
and hence to find the equation of the tangent at that
point, we have merely to carry out analytically the hrmt—
process involved in the definition of tangent. In thie. "
next article the method will be applied to a problem,
partly by way of illustration, and partly beczguse the
result — equation (5) of §60—is in 1tsql~f a useful
formula. ,

60. Tangent at a given point of the sfandard parabola.
We proced” t&atlt the g iition o(\the tangent at any
point* P: {x1, 1) on the parabola\
ey = 4¢%

Choose a point P’ on the cutve near the given pomt and
denote the distances PR JRP’ by Ax, Ay respectively, so
that the cofrdinates of: P! are (x, + Ax, 31 + 4y). Since
P’ lies on the curves its codrdinates may be substituted
Aor'x and y in (1). This gives
2) 3+ 2348y + Ay: = 4ax;, + daAx.

= 13
P O Since (x1, ) lies on the curve we have

- | G1D
DT s (3) y2 = dax,
whence (2) becomes

29:Ay + AY® = 4ahx,

or

' Ay . Ay
Fic. 4 —_— — = "
16. 63 ) 2y1Ax + AxAy 4a

The quantity 2—2:’ occurring here is the slope of the secant

¥ Excepting the vertex, where the tangent is evidently the line & = 0.
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PP, If now we let Ax approach 0, so that P’ approaches
P along the curve, Ay will also approach 0, but by § 59

the slope m of the curve af P will be the limil of the ratio 4y

Ax
Hence, when Ax approaches 0, (4) reduces to *
2ym = 4a, m = 2a,
y 1 ¢ s\
The desired equation is therefore (§ 23) o\

2a N
y—yl—zy—l(x x1), ".{'
Or 4
wwidbraulibrary.org.in

iy — N = 2ax — 2&3\5{1.\\

Simplifying by means of (3), we obtai:;\fhe result:
The equation of the tangent to thé_parabola y* = 4ax a
the point {x,, 1) on the curve s ,:,’;i.

®) vy = 2a% + 2ax;.

61. Summary. The géneral method employed in § 60
may be summarized asdollows: '

To find the slopém of a given curve at a point P:(x yl) on
the curve, choose Q”ﬁéz'ghborz'ng point P’ 1 (x4 _—I— A%, 31 + AY)
ot the curve, 5 Sbatiiule the coordinates of P in the equalion of
the curve, end simplify. Divide through by Ax. Lef Ax ap-

proack 0, f’- at the same time approaching the value T m, and

'\
solve for m.

N\

*In the term -ﬁ-lAy, the factor —i—l approaches while the factor Ay ap-
x x
proaches 0, so that the whole term approaches 0. .
1 Exceptionally. Ay approaches no limit. In the case of the conics, this means
' Ax

that the tangent is the line through P parallel to Gy—i.e. theline ® = %
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EXERCISES
Find the tangent to the curve at the given point.
1. a2 + 92 = a? at (x,, y1). Ans. xx + vy =4
2, 32 — 32 = a¥at (r, ¥)- Ans. nx — 9y =&
3. x* = 4ay at (x1. 7). Ans. 1x = 2ay + 2ov
4, 2xy = a* at (x1, ). Ans. yix + 1y 5 6N
5. x2 — ¥ = 2ay at {x1, y1) Ans. 11X —yy = ﬂy*@’l-
6. a* 1 32 = 2ax at {x1, 3). Ans. mx + yw ‘a:x + an.
7.2 —2xy v +2x+y—6=0at(22). Afgs‘zx—]—y 6.
8. a2—xy+3r—y=1latx =2 ) Ansc}x +1=0
9.y=x3—2x-—latx=2 Aszsy—wx—l?.
10. y = x5 — 3 —Satx—l Ans.x+y—|—4 Q.
www.dbr aul ral )
11, 2 4 235 2% + 4y 4 2= 0 at 2, S Aps, x =2

12. By setting m = 0, find the hlghes&\and Jowest pomts and the
céater, of the ellipse 22 + 2xy 4 298 - 4x ¥ 4y = 0. :
Ans (-—4 2), {0, —25C: (—20.

13. Solve Ex. 12 for the elhpse :c? —Bxy 4yt —3x+ Ty —2=0
sdns, (3. 1), (— 44, -4 C: ¢ -3
14, In Ex. 17, p. 94, aftér mtroducmg the given data, clear the equa-
tion of fractions and find sz \By setting m = 0, determine the most advan-
tageous length for the }e?Er Ans. 5 . 9in.
15. Apply thex@ethod suggested above (Ex. 14) in Ex. 18, p. 9. Why
does the method fail in this case to give the most advantageous length?

16. A hod¥ foves in a vertical straight line, covering in time { a dis-
tance x ='31{ s, What is the greatest height it will reach? Ans. 41t
8 .:':fWO geometric ?roperties of the parabola. Two im-
pq t properties of the parabola are as follows.
SSTHEOREM I: The normal bisects the angle between the focal
\ "mdms drawn to the pomt of conlact and the line Ikmugk that
point parallel {o the axis.
THEOREM 11: The foof of the perbendicular from the focus
upon any langent lies on the langent af the verlex.
That is, in Fig. 64, the line PN bisects the angle FP@,
and the line FL intersects P7 on the tangent at V.
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The property embodied in Theorem I is the under-
lying principle of the “parabolic reflector,” used in
searchlights, spotlights, etc. :

Rays issuing from a point- r ‘ N\ Q
- source at £ and striking the ~
- polished interior of a parabolic,

surface (§109) are reflected C

parallel to the axis of the A AN '.“\N\

surface. N

The proof of the above
theorems will be left to the
student.

R
RiG. 64
p x\w.dbraulibrary .org.in

W

A

EXERCISES

Using formula (53, § 60, in connection with‘%ig 64, establish the follow-
ing properties of the parabola. \/ i

1, The tangents at the ends ofs ”e 1atus rectum intersect on the
direcirix. R\

2. Any tangent intersects fthe directrix and the latus rectum (pro-
duced) in points equally distant {rom the focus. :
2. The “subtangent 2 is bisected at the vertex —1i.e. TV = VM.

p

4. The *subna a{{’l AN is constant and equal to RF, ie. the dis-
tance from directrix ‘rt:)Qfocus‘

6. In Fig. 64,\FF = TF = FN.
8. ProverTheorem 1, § 62, geometrically.
7. P;c\rvie;\’i‘heorem 11, § 62, geometricatly.
8'.\I£1:0've Theorem I analytically, using § 10.
.8, ‘Prove Theorem I by finding the bisector of angle FPQ (§ 32).
o~ \31b. Prove Theorem T1 analytically. )
{‘( :&..-11. Prove that the tangent at any point (s, y) of the ellipse
) 3
2 ®_
” “ N > i circl
. 2 - ircle
12. Tangents are drawn to the ellipse %2 5= 1 and to the ar

2 4 y2 = g® at points having the same abscissa. Prove that these tan-
gents cross Ox at the same point. (Ex. 113



Q

100 TANGENTS AND NORMALS - Ch. IX

18. Prove Ex. 1 for the ellipse. (Ex. 11.}

14. Prove that the tangents at the ends of the latera recta of an ellipse
have slopes + &

15. Prove that the perpendicular from 2 focus upon any tangent to
an ellipse, and the line joining the center to the point of contact, intersect
in a point on the directrix. )

16. Prove that the product of the distances of the foci from any. tan-
gent to an ellipse is constant {equal to %), _ Ko \

Solve the follewing problems by ruler and cormnpass. '\

17. Given a parabola and its vertex, construct the tangeqt andnormal
at any point. (Ex. 3.) :

18. Given the axis, vertex, and one point of a parat{:rla construct the
focus and directrix.

19. v bsauliheand e58HBint of a pa:aQoJa, with the tangent at
that point, construct the focus and directrix. ¢ p

20. Given the axis, vertex, and one t:;m@eut to a parabola, construct
the focus and directrix.

21. Solve Ex. 17 by a second metho&
22. Solve Ex. 17 by a third me;hod
23. Solve Ex. 19 by a secaiid Method.
24, Solve Ex. 19 by a{hn'd method.

25. Given a parahokl with its vertex, construct the tangent parzlld
to a given line,  , 2%

26. Given an é!lpse with its center, construct the tangent at any
point. (Ex. 128

2T, Prove\that for all values of m (except m = 0) the line

2 y=mtl
is Ta@(:nt to the parabola 32 = 4ax.
Solve the following by using the formula of Ex. 27.

& ’\.' * 28. Prove that only one tahgent to a parabola can be drawn parallel

%o a given line, and none parallel to the axis.
29. Prove that the tangents drawn to a parabola from any point of the
directrix are perpendicular. '
80. State and prove the converse-of the theorem of Ex, 29.
81. Solve Ex. 2 by a new method.
. 82. Prove Theorem II, § 62, by a new method.
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48. Given a parabola with its axis, construct by ruler and compass
the tangent parallel to a given Line.

34. Prove that for all values of m the line
y=mx s VEFEH
is tangent to the ellipse & + 2 = 1.
at B
35, Using the formula of Ex. 34, prove the theorem of Ex. 2 for the '\
eltipse. (X‘
38, Solve Ex. 16, using the formula of Ex. 34. (»} ot



CHAPTER X

ALGEBRAIC CURVES

63. Algebraic curves. All plane curves other than the,
straight line (curve of first degree) and the conic sechons‘
(curves of second degree) are called higher plcme CHTES.
An algebraic curve is a curve whose Cartesian\equation
can be written as a polynomial in x and y,. equated to 0.
AIgebralc curves of thlrd degree are called’ cubic curves,
or simply Cabica? B BE Yurth degree, quartics; efc.
In the present chapter we will conmd«f{r* gome of the simpler
types of higher algebraic cur¥es/ chiefly cubics and
quartics. Factorable equations” (§ 18) and equations
having no locus will be excluded.

As we know, every equatlon of the second. degree can
be reduced to a “standard form,” after which the curve
* is readily traced. On\account of the great variety of pos-
sible forms, no \sqmlar process is feasible even for the
cubics — much, léss so for curves of still higher degree.
Instead, weq shall try to discover, in each case, as many
as p-::ﬁsmb@x of the algebraic properties and peculiarities
of the eqfiation, and then to translate these into geometric
lang‘kg”e- (A beginning in this direction was made in
§8 14-16.) While the line of attack depends more of
léss on the particular equation in hand, nevertheless the

) process can be systematxzed to some extent, as will now
be shown.

64- As;fmptotes. If the tangent to a curve approaches ¢
c.ieﬁm:e. limiting position as its point of conlact Tecedes
endefinitely, the line so approached is called an asympiole.

102
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It can be shown that the asymptotes of a hyperbola
‘as defined in § 50 also satisfy the above definition. While
the hyperbola is the only conic having asymptotes, many
higher plane curves possess one or more of these lines,
and they play an important part in the geometry of
those curves.

65. Behavior of y for large values of x; horizontal,
asymptotes. When x increases indefinitely in either diecs
tion, ¥ of course may behave in a variety of ways, .The
two most frequently occtrring situations are: o\

(@) ¥ increases numerically without limit; or. & *

(b) ¥ approaches a definite Yimit a. \%

These results are easily interpreted :Pstormdtnple; g in

(@), if ¥ becomes large and positive @$/x becomes large
and positive, we know that the cupwve'recedes indefinitely
from both axes, in the first quadraht. '

In (3), the curve approachegimore and more closely the
fine y ~ @: this Yine is a kogdéontal asymplote.*

66. Vertical asymptoteéi * It may happen that y in-
creases indefinitely as approaches some value b. This
means that the cur¢e-approaches more and more closely
the line x = b: ﬁﬁine is in general a vertical asympiote.

. 67. Restrigtion to definite regions. It is usually pos-
sible to detemhine certain definite portions of the p}ane
within whiéh the curve must lie. While no general direc-
tions ¢t be given, in many cases we can solve the equalion.
forband note the changes of sign of the right mem-
~ber. The process will be explained presently by examples.
88 Summary. The preceding remarks may now be
collected in the form of a definite sequence of steps:

% Tn tave instances a curve approaches a line more and more closely I‘;ﬂ‘i;?ee )
tangent approaches no limiling position, so that the line is not an asy ptote,
Such exceptions cannot occur among algebrajc curves.

Q"
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1. Test the curve for symmetry. (§16).

9. Find the inlersections with the axes. (§14). :

3. Deltermine the behavior of v for large values of . Find
the horizonial asymptotes. (§65.)

4, Find the vertical asymplotes. (§66.) N\

5. Determine as narrowly as possible those regzmzs Qf f\the
plane in which the curve lies. (§67.)

6. Look for any further general information (kat‘ may be
obtainable,; and if necessary, plot a few poinisy,

69. Polynormals We take first the 43¢ in which yis

a polynomial in x, also called a mth{al integral function:
;W—wggﬁiu—ﬁbral oi'g_an + o, 1% + 4.,

where # is a positive integer and gy, a1, * + +, @1, 8. BTETE-
tional numbers. The casessit= 1, # = 2 have already
been studied (§§ 28, 44); thus we may now assume # = 3.

Before considering spécial examples, we shall apply
our analysis to the gdlynomial in general, thus deducing
certain results appﬁéable to all curves of this class.

1. The curve'cannot be symmetric about the x-axis.

2. The x-intércepts are the real roots of the polynomial.

3. As x*Pecomes large in either direction, ¥ becomes
large (tHough not necessarily of the same sign as %).

4. 'Ihls step may be omitted here, since no polynomial
cur\re can have an asymptote, vertical or otherwise.

(5. A polynomial can change sign only by passmg
ﬂ]rough the value 0, hence the curve can cross the x-axis
only by intersecting* it. The function actually will change
sign at every x-intercept (root of the equation y = 0), ex-

“cept when the vanishing factor carries an even exponent
(double root, quadruple root, etc.), in which case the curve
will touch Ox and turn back. See Figs. 65, 66.

* A “discontinuous”™ curve may cross by jumping. See Fig. 66, p. 108
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6. General remark: For every value of x there is
one and only one value of w. IHence the curve extends
across the plane in an unbroken arc from left to right.

Example: Trace the curve
y=(r~ a2 — 4).

1. There is no symmetry. <\

2. Intercepts: x =0,y =—4;y =0, x = 1, + 20

3. When x is large positive, y is large positive?s large
negative, y large positive. The curve rises i{]Qe'ﬁnitely in
the first and second quadrants. V

5. y changes sign as x passes thrcug. gil;;@llquﬁ,a?y%i_z_.m
By step 3, at the extreme left y > 0.;.@,‘ erefore re s
positive in the interval x < — 2, betomes negative in the
interval — 2 < x < 2, positive for'x > 2. The curve is
restricted to the unshaded regiéns of the plane * in Fig. 65.

6. Plotting the additionalpoint (— 1, — 12), we draw
the curve, with the x-scale Tour times the y-scale.

\*

N

0

N

Fic. 65

.
7

N

*In the actual drawing of curves it is hardly desirable to shade the figure in
this way. The device iz adopted here to show visually the meaning of step 5.
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EXERCISES

Trace the following curves, each on a suitable scale.

1. y = x{x® — 1). 2.y = x(d — a?),

3. v =—x(x2 — 6x + &) 4. y = x(x? + 5x + 6).

B. v = (1 — 2332 — x). 6. v = x(x — 1)% ~
7.y = x% — ldx? + 59x — 70, 8.y=x3+10x2+29x+2?..
9.y = (x + 4)% 10. y = {1 — )5 <O
1, y = x2(x® — I). 12, y =1 —x* O

13, ¥y = 3x + a? — 3x% — 2t 14.y—4x4-—17x2+4

15. y = x{x — 2) 16. y = 4z* — 348
1Ty =t — a7 — 12 18. y = xt.~ 3\+2x= 61

19. v = (x — 1)E(xs — 2x%). 20, v = x(x2 — 1)(x —2)%

Draw the graphs o?r oﬁa%%l Ellic funt:ﬁons

21. The volume remaining when a slab%f thickness 1 is cut from one
face of a cube of edge !.

22. The volume remaining When slabs of thickness x, 2x, 3x are cut
from three mutually perpendlcular fal:es of a cube of edge 1.

23. The volume of a box madia by cutting squares of side x out of the
cormers of a piece of cardbgard 6 in. square and turning up the sides.

24. Ex. 23 if the carc{board is 8 % 4 inches.

25. The volume of.a right circular cylinder of radius x inscribed in a
right circular cong o \adlus 4 and height 2.

26, The VOJ,,BIIlB of a right circular cylinder of altitude 2y inscribed in a
sphere of radiusid.

27. Tlm\volume of a right circular cone of altitude y inscribed in a
Sphere\fkad.ms a.

_28.°\Draw the curve from which cos 3¢ may be read off if cos ¢ is given:
cosBB =4cos*d — 3 cosf (Putx = coséd, ¥ = cos 38.)

N 29, Draw the curve from which cos 4¢ may be read if cos ¢ is given.

\ " 70. Rational fractions. Consider next the case in which
y is equal to a rational fraction :
1) g = N ax+ax'+...+a x+a, (nz0)
D boxm + byxm1 4 e b x + by (m = 1)
We assume that our fraction is in its lowest terms— i.e.
that N at_ld D contain no common factor.
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We first analyze the general problem.

1. No symmetry with respect to Ox.

2. The x-intercepts are found by setting N = 0.
3. As x increases in either direction:

(@) If N is of higher degree than D, ¥y becomes large,
though not necessarily of the same sign as x. (See below.}.{>
(6) 1f N is of lower degree than D, y approaches 0: the;

x-agis 18 an asymptote, ~
(c) If N and D are of the same degree, y approaches
B %. the line y = = is an asymptote. m\
4. y becomes mﬁmte as I approaches Thus we find
the real roots (if any) of the equatl‘éﬁwﬁb‘fﬂ@bmy gy,
thelines x = 7, x = 74, - - - AL i)ertmal asymptotes.
5 A fraction changes sign when E‘.lther N or D does so.
Thus we list the roots of N = Qx D = 0 (already found in
steps 2 and 4), casting out thé; 00ls of eten order (double,
quadruple), and note for eachiof the others a change of sign
of ¥ and a passage of theé\curve across the z-axis: by in-
tersection where N, = O\by jumping where D = Q.
6. There is one a}xﬁ only one value of y for every value
of x, excepting those values for which D = 0.
Proof of 3@ In this case, s = #, so that
~Pagr + gt A - s A GenX + Ga,
A e b - F beax + b
D1v1de numerator and denommator by x7:

(75 n

\ } Iy + al + + xﬂ_jl: xn-
= b b

b{) + + xﬂ_i + E

a
Thus, when x increases indefinitely, y approaches Bf
Cases 3(g) and 3(p) may be handled similarly.
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Example: Trace the cubic curve
xz

@ YTEEDE =Y

1. There is no symmetry.,
2. The only intersection with the azes is (0, 0). R

3. By the above argument, as x > 4 oo, y >{sthe
line y = 1 is an asymptote. For large positive)y, the
denominator is less than the numerator and "y > 1; for
large negative x, vy < 1. Thus the curve dpproaches the
asymptote from above at the extremeé(Pight and from
below at, t@}gv%%g{%%rlgft. Finally, tting ¥ = 1in (2),

0T

we find x = 2: the curvé crosses the symptote at (3, 1).
(It can be shown that g curve af thenth degree may intersect
arn asymplole in not more than >~ 2 poinis.)

4. As x> 1, and as x> 3} increases indefinitely: the
linesx =1, x = 3 are agymptotes.

9. The numerator .vahishes at x = 0, but does not
change sign becauselof the even exponent; the denomina-
tor, and hence th{i\fuhction, changes sign as x goes through

| S
ops=———p =

\
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EXERCISES

iy= . Ly =1

Y 142 2y 1 4 at
3y =4y — 1, A oxiy =y —x,
_E.xﬂ—xy—4x+y=0. 6. x8 — 422 4 xp -2y =0.
.+ —y—-4=0. 8. dxty — x2 -9y +1 =0,
9. 2xly — 224 By +-2x-+y =1, 10, 22y — 322 -y 4+ 1 =0

1—-2x 12 14 2x — x% — 243 S,y

W y=-—=T— 2. v = . e

¥ e Y {x —2p 'S

_ 4 — 1682 —x + 4 _3e 41l L\

13. ¥ (x — 3)2 14. y = K & ‘Z
15,y = B - D& — 22 Ly =X 8 19x\—> 12

Y 2z + D) 1.y 9

1 — 4
1.y = oD 8. y = iiﬁjiigéld;.b*ary org.in

_dg® — 135 4 6x 43 ()

19, y = 20, v = 25

d #(x = D) Y T e 4

91,y = &2 . »2“ 2x3 - 10
T : [ S e Sy

23. When daes (1), § 70, representa. hyperbola?

24, A right circular cone is cirgumscribed about a sphere of radius a.
Express the volume of the cone a%"’a function of its altitude, and draw the

graph. What kind of curve is, thi§? Ans. V = Lxa® - kz- .
— 2a

25, InEx. 24, express the volume of the cone as a function of its rachus,

and draw the gra.ph \ & x Ans. V = Zra - 7t .
) 72—

2. Draw the« Curve from which tan 26 may be read off when tan @ is
given. (Putx\atan 8, y = tan 24.) N
27. Represent tan 3¢ as a function of tan 6 : tan 39 = .'j_j:__an 93_';331
(Put =, N dan 8, y = tan 34.)
x:az Draw a curve from which sin 2¢ may be read off if tan g is given:
m =

2tan ¢
m (Cf Ex. 1)

29, Draw a curve from which cos 26 may be read off if tan ¢ is given.
30. Draw a curve from which sec 2¢ may be read off if cos ¢ is given.



CHAPTER XI
POLAR COORDINATES

71. Distance and bearing. Instead of locating a point
by its distances from two perpendicular lines (§2), we~
frequently, in ordinary usage, locate it by its distance arid
“bearing” from some fixed point: one town is ¢ tatles
southeast of another; one boundary marker is S0t N.
10° E. of another; etc. This alternative mefhiod, like the
former one, has its counterpart in analyticigeometry.

79. Polarecrdinates olah us chodse'a fixed line Ox
in the cobrdinate plane, and a point\® on this line. The
position of any point P (Fig. 67)dnthe plane is determined
if we know the length of the liné OP together with the
angle that this line makes with the fixed line O, both the
distance and the angle beifig measured in a definite sense.
The segment OP and the'angle xOP are the polar codrdi-
nates of P; they an“chaﬂed the radius vector and the polar
angle respectivil;(‘,.. nnd are denoted by the letters 7, f.

N, O The fixed line Ox is the initial line,
or polar axis, and the point O is
the pole, or origin.

The polar codrdinates of a point
are written in parentheses with the

_ '.\3."" / 0 radius vector first, as P: (7, 8), Of
\m ) ‘e simply (r, 6). The polar angle is
FiG. 67 positive when measured counier-

] clockwise, negative clockwise; the
radius vector is positive if laid off on the terminal side of 9,
negaz'a've if measured in the opposite direction, Le. o the
Ier;:fnmal side produced through O. Figure 67 shows the
points @ : (2, 60%), R : (— 1,60%, §: (— 1, — 17).
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To plot a point whose polar codrdinates are given, it is
best to begin by drawing the line on which the radius vec-
tor lies, i.e. the line making an angle # with Ox, and then
to lay off on that line, in the proper sense, the distance .

73. The locus of an equation. If r and 8 are connected
by an equation of any form, we may assign values to #
and compute the corresponding valtue or values of . Thé),
points thus determined all lie on a definite curve, the igegs
of the equation (cf. § 13). Curve plotting is doneiymost
conveniently on “polar cobrdinate paper,” Shich is
paper ruled in concentric circles and radial liges:

While to every pair of polar codrdinatessIresnonds &
single definite point, the converse is nobytrue: the same
point may be represented by various pairs of codrdinates.
Thus, in Fig. 67, the coordinates (2, 60%), (— 2, 240°),
(-2, — 1209, (1, — 300°) all represent the point Q.

To each equation correspgmc'l’s a single definite curve,
but the fact that a given peint may be represented by
different pairs of codrdinates makes it possible that a curve
may he represented 'thh’e polar system by more than one
equation. Thus the\equations r = 2, v =~ 2 represent
the same curve,\zitircle of radius 2 with center at the

T Onhi{fé:lued functions. We take up the problem
“of tracidig “polar curves, consider-

ing fitst the case in which there is

énewalue of 7 for each value of 6.

Examples: (@) Trace the curve 0
7 = 24 COS 6.

1
910!%«!%#!%# 3T

T l Za!\/ﬁalv@a\ a 0 ‘ 1. 68
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Plotting these points, we obtain the upper half of the
curve (Fig. 68.) Since for values of 8 in the second quadrant
cos ¢, and hence 7, is negative, the curve falls in the fourih
quadrant; the values of cos ¢ are numerically the same as
in the first quadrant, but in reverse order, so that the™
lower half of the curve is symmetric to the upper hali
In the third quadrant cos ¢ takes the same values\asin
the first, and in the same order, but negative; the“upper
half is repeated. Similarly, for ¢ in the fourth quadrant,
the lower half is repeated. Since a complete period of the
cosine function has now been covered, futther values of 8
www.dbraulibrary.orﬁ,in mer,el&frepeat the same
' Curve

() Trace the Jour-leaved
1058 T = @ €08 26.

o° 150 22%0 300 450
26 (0°| 30° 45° | 60° | 90° -
rla|4V3a iv2aita} O

=3
e

Plotting the points found

O above,* we obtain the half-
loop nutbered 1. As’6 ranges from 45° to 90°, 2¢ ranges
from’@l)"’ to 180°: thus the values of cos 26 are numerically
tl}é:;same as those found above, but in reverse order and

. fiegative. Since 7 is negative, the corresponding portion
Jof the curve lies not in the first, but in the third quadrant:
the half-loop 2. Reflecting in Oy, we obtain the arcs 3, 4;
reflecting in Ox, the balance of the curve. " Since this cov-
ers a complete period of the function cos 28, we have

- the entire curve. '

Figs 69
X

* 1t is of course the values of 7 and 8, not 7 and 26, that are plotted. Thus the
second point is (%Vﬁa, 157, ete. o
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1;”5 o, EXERCISES v "7, @ 2~

Trace the following curves on polar cotrdinate paper. ’

“ 1.7 =@ Ccost 8, 2. T = g sin® 4,

_3. r = a(l -+ sin® ). 4. v = a(2 — cosZ ).
/-1:5.1=a(0058~sin8). B r = asin 24,

7. 72 — sin 8) = a {(ellipse). 8, 72 +cos8) = a.

9. r = a(3 - cos ) (limacon). 10. v = w(2 — sin 4).

AL 1 = a(1 — sin 6) (cardioid). 12. v = a(l + cos ). L\
13. 7 = a(2 cos ¢ — 1) {imacon). 4. v = a{l +2sin8). 27\
16, 7(1 + sin 6) = 1. 16. v(1 ~ cos9) = 1. .\«

17. v = 2a cos ¢ cot 4. . 18‘7-21351n6tan8

19. r = a sin 34, 20, r = 2 cos 38"‘\‘

21, r = asin? 20, 22, 7 = @ CoR20

28. r=atan g, 24, Vﬁ%@éﬁ!&hbral y.org.in
28, r = a(l — sin 26). ) 26. 7—Q{1-—2c0529)

76. Two-valued functions. Consider the case in which
7 is expressed as a function of @) so that there are fwo
values of r for each value of 6. XN\

Example: Trace the lemniscate r* = a* cos 26.

o) 0 | 13 (fhaep | 800 e

2l 0 e{@f 45° 60> |oo°

! at, ':0.8732 0. 71a 0.54% 0
Ty  003¢) + 084z + 0.7la| O
Plotti “Ehése points, we get the arcs 1, 2. As ¢ ranges
from 45710 135°, 20 ranges from 90° to 2707 cos 20 is
negayive and 7 imaginary. For 135° < ¢ < 180°, we have
{‘f’tﬂjﬂ?<2e<360° and r as-
es the same sequence of
values as above (in reverse z
order) -~ the arcs 3, 4. For o
180° < § < 360° we merely .
repeat the same curve. Fic. 70

s\
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EXERCISES
Trace the following curves.

1. 2 = g*sin 6. 2. ¥ = a?cos f.
3. 1% = @’ gin 26 4. 7% =1 4 sin? 4
6. r*{1 +costf) = 6. (1 4 3sin*¢) =
7. rfgin 20 = ¢ 8. 72 cos 20 = g% A\
9,12 =3 — 4 cos?d. 10. 2 =1 — 4 sin® 4. .
11, 92 = {1 + cos 6)3% 12. 7 = @l — 2 sin 6%, ()
13. 7 = @*(2 — cos £). 14. v = a¥sin 0 +4), \
15. 17 = @*(1 + sin @). 16. 2 = a*(2 cos 6 &N,
17. ¢ = g? sin #(1 + sin #). 18. »* = af cos &(};’4— €08 6).
19. 72 = g?(sin @ + cos 6). 20. 2 = g2gin o(1 — 2 sin @),

21. 2 =@ Braulibrary org.i2. 1 ={*-pos ¢ cos 26,

76. Transformafion from one_ éy\stem to the other.
The usefulness of polar coordmates lies chiefly in the fact
that many important curves\até more easily traced, and
their, properties more easily, developed, by using the polar
equation of the curve. N6t infrequently both orms are
useful for the same curve some properties appearing more
readily from the Gartesian, others from the polar form.
This suggests tk(e desirability of formulas enabling us to "
pass from either system to the other. 0

Let the p@mt P have the Cartesian codrdinates x, ¥ and ;j

the DOlaf‘coordmates 7, 8. Then it is obyious that
3)\ P (D {x = rcos §, ‘,
R y =rsind, _
) ¥y and _ B
. r2 = x4+ i
0 £ (2
| Fie. 71 : tang = &.
Examples: (a) Obtain the equation of the circle
x2 ,_l__ y2 — 2ax o

in polar coérdinates.
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equation 7% = @*sin 8 to Cartesian co-

Since x? + ¥* = r?, we have at once
72 = 2arcos 8, or r = 24 cosé.
(b Change the
ordinates.

While not necessary, it is convenient first to multi-
ply both members by 7, to introduce the combination®

r sin 6, and then avoid radicals by squaring:

7 = a¥rsin'g,

This gives at once

Assume that the axes are placed as in Fig. 71. 7

(xt + ¥ = g4yt N

r® = gi(r sin §)% O

A\ ¢
2\

N/

/N

EXERCISES

wwiw.dbraglibrary org.in

1. Find the Cartesian codrdinates  ofthe points (@) (1, 30%;
®) (— L3 {0 (— 2, 0% (@) (3, — 607); (= 2, §7); () (3, 2257).

2. Find the polar cotrdinates of the points (a) (2,2); (&) (V3, — 1s
© 0,05 @ (-8 —45 @ (-5 N © -3 @ (- 10.

Find the equations of the following curves in polar codrdinates.

8. y=x : ) ~ 4, 2 7 = A
b. y = 2x 4 3. { 6. x +y =1
7.9 = a. LW B.x =a
9. Zﬁ =dagy. N \\ 10. y* = de{x — a).
11, (2 + )2 @ oy 12. (2 + ) = 8.
18, y = x3 1’;\ . 14, ¥ = 2,
16. z cqa@:ﬁ"y sin 8 = p. (§31.) Ans. Tcos (8 —-ﬁ) =p.
1653%-)» = 2a%xy. | Ans, =@t tan 20,
Find 1".}16 equations of the following curves in Cartesian cogrdinates.
...\I"iﬁ: r = d. 18. § = 45°
\J18.0=0 20, tan 6 = 2.
21, sing = &. 22. cos § + % = 0.
23. r =2 e b 24, v +-3cose =0,
26, r = sec 6 tan 4. 26. 7% cos 28 = &% .
aT. 7 cos (0 — ir) =V2. Ans, 2 +y =2
28. r = a(l — cos 6). Ans. (2 43 + ax)t = @(x® + %)
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77. Locus problems in polar cobrdinates. To find the
equation of a locus, using polar cotrdinates, the procedure
is exactly the same as in §§ 20, 21. That is, we assume g
point P: (r, 6) in a gemeral position on the curve, and
from the statement of the problem or by means of some\
characteristic property of the figure try to obtain an egua-
tion involving 7, ¢, and the constants of the problem*ﬁus
equation must be the equation of the given 10cus~

Polar codrdinates are strongly indicated m'ﬁlat numer-
ous class of problems where the distance(of’'the moving
point from a ﬁxed int varies accordingto some simple
law. The Hixed"] ﬁ’ﬂa@id’hﬁi“usual be taken as pole,
and a line of Symmetry (if such e;;{gts as polar axis.

Example: In Fig. 72, a randai line is drawn through 0
intersecting the circle at P; B\is projected to M; a length
0Q.%\0M is laid off on OP. Find
the' locus of Q.

. By trigonometry,
. OFP = 0Acosd=2gcos8,
4 OM = OP cos 8 = 2a cos® 8;
since
: » OM=0g=r1,
\Fxc 72 T = 2a Cos? 8. (Ex. 1, p. 113))

) ‘\" v EXERCISES
\ " Find the polar equations of the following loci, Draw the figures.
- A circle of radius 5 with center at 0.
. A line through O making an angle of 45° with Ox.
- A circle of radius @ with center at (s, 0). (Fig. 68, p. 112}
- A circle of radius & with center at (a, Z=).
A line through (g, 0) perpendicular to Ox.
- A line through (g, 1x) parailel to Ox.

):pwm.umu
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— 7. The path of a point which is equidistant from a given point and a
given line. Take the given point as pole and the given line perpendicular to
Ox at {a, O). Ans, 1l + cos ) = 4.

8. Ex. 7, if the moving point is half as far from the given point as
from the given line. Ans. r(2 +cos6) = a.
9. Ex. 7, if the moving point is twice as far from the given point as
from the given line. Ans. {1 4+ 2 cos 6} = q.
10. Ex. 7, taking the given linc parallel to Ox through (e, ). N
Ans. 7(1 ++ sin 6) = &)
11. In Fig. 72, a distance OR = M4 is laid off on OP. Find t};ello\cus
of R. (Ex. 2, p. 113.) o

12. In Fig. 72, a distance 0S = OM — MA is laid off o BP. *Show
that the locus of § is a * four-leaved rose.” (Fig. 69, p. 112&\\

13. InFig. 72, the line OF is produced to a point R shch that PR = 2a.
Show that the locus of R is a cardioid. (Ex. 1@wpw HBehulibrary.org.in

12. Tn Fig, 72, 2 point R is marked on OP sucr@Et OR = OP — OM.
Find the locus of B. (Ex. 27, p. 113.) \

16, In Fig. 72, a point R is marked on\QP such that OR = MP.
Show that the locus of R is a four-leaved roges) (Ex. 6, pi 113.)

16. In Fig. 72, let OP produced inte}‘séci: aata point T find the locus
of the midpoint of PT, and trace thewyrve.  Ans. v = a(sec v + cos 8).

17. The center of a circle rr;gves' along Ox; tangents to the circle are
drawn through 0. Find the logis'ef the points of tangency.

18. A tangent drawn taveircle with center at O intersects the axes at

X
S

A, B. Find the locus of, thevmidpoint of AB. Ans. r sin 26 = a.
"19. Find the equation of a circle of radius @ with center at (r., f1).
A/ Ans. 12 — Qruorcos (8 — ) = &t — 1

90. A point’Mmdves so that the product of its distances from two fixed
points is oirth the square of the distance between the points. Using
Cartesianodrdinates, and taking the points (+ 4, 0), find the equation of
the locusy, Show by transformation that the locus is a lemnpiscate (p. 113).

AN

O



CHAPTER XII

PARAMETRIC EQUATIONS
N\

78. Parametric equations. For many loci, it is diffieiit
to obtain either the Cartesian or the polar equation’di-
rectly; instead, the definition leads naturally to fwe equa-
tions giving x and y respectively in terms of Some third
variable. This awuxiliary variable is calléd‘a parameter,
and the twoeapabions-are,pherametric “eguations of the
curve. To obtain the ordinary Carlesian equalion we have
merely to eliminate the parameter hétiveen the hwo equations.

The Cartestan equation of a ¢urwe is unique: for a given
curve in a given position on the-axes there can be only one
equation.* As regards parainetric representation, the case
is quite otherwise: two different problems may lead, each
in a perfectly naturabway, to two different pairs of para-
metric equations for the same curve. For instance, if a
point moves in*@\plane in a certain way, the codrdinates
of the point dbany time ¢ may be given by the eguations
1) NY x=t y=1-t
Under, ap})f:her law of motion the equations may be
(2) A x = costf, y=sin?i

Qddmg either equations (1) or equations (2), we get
\ (3) r+y=1
which shows that in each case the point moves in the
straight line (3).
Sometimes the parametric equations are merely inci-

* While it is possible to find fault with this remark, the objections are purely
il('}ttlé‘ic;alzséor all practical purposes, the statement is strictly true. See the foot-

118
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dental, being discarded entirely as soon as the Cartesian
eguation is obtained. In other cases the Cartesian equa-
tion is so complicated that the problem is best studied by
means of the parametric equations. Again, it may happen
that both forms are useful. Thus, in the first motion-
problem above, it appears from (3) that the point moves.
in a straight line. Since, by (1), both x and y are linear
functions of ¢, it follows (§ 29) that the point movesiwith
constant speed — a fact which is not shown at alhby (3).

T9. Representation of a portion of a cw¥é: In the
clementary applications the parameter 8ol course re-
stricted to real values, and frequemtty, dogatheverypature
of the problem, is still further restricted, for example to
positive values. {(Compare the Igst})aragraph of §28.)
Because of these restrictions, thg: ‘parametric equations in
many cases represent only a pertion of the curve whose
Cartestan equation is foundBy elimination.* Thus, if ¢
may assume any real value, equations (1) of § 78 rep-
resent the entire line; {ﬂ,quations (2), only the segment in
the first quadrant,'\smce x and y must be positive. In
studying the motibn of a point, we would as a rule con-
sider the motionvas starting at time # = 0, and would be
interested only in subsequent ——ie. positive — values
of £;if sq;'ec}uations (1) represent only the part of the line
fo thg;ﬁght of the y-axis, since x must be positive.

80\ "Point-plotiing from parametric equations. To
{Plot, by points, a curve represented by parametric equa-
fions, we merely assign suitable values to the parameter
and compute the corresponding values of x and 3.

# Such a phenomenon is not surprising. ;f wg prove _that every (%, »)-pair
satisfying two parametric equations also satisfies 2 certain Cartestan equation,
it does not follow, conversely, that every pai satisfying the Cartesian equation
must satisfy the parametric equations,
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¥ Example: Plot the curve
(1) x=acos®s, ¥y = asin’e,
{0 4 | x| #r |4
o & x| a|gv3a|4v2a| 4a |0 -
¥y 0] %3¢ |3v2a|2V3a o
Plotting these points, we geﬁjthe
portion of Fig. 73 Iying ifthe first
Fic. 73 quadrant. Upon taking, the cube

root of the square of each member, the Q*{en equatlons
become www.dbraullbral ,org in
X2 = 2R cost Y28 = az;s Sln"'S
adding, we get the Carteman equa‘Kltzh
x2|f3 + nyS - QIIS.

From this it appears (Theorem-T, § 16) that the curve is
symmetric to both axes, Whence the balance of the curve
may be obtained by reﬁectlon

The student is warned not to confuse parametric repre-
sentation with polar codrdinates. The parameter ¢ here
oceurTing is qtﬁ»i;‘e"different from the polar angle ¢ To
make sure of (this, divide the second of equations (1) by
the first, member by member:

\ 113
A\ tan‘*e:z, tane:z—v-

F‘pr.’the polar 8, we have (§ 76)
~O tan o = 2.
x
EXERCISES

) Find the Cartesian equation of the given curve, and draw the curve from

the Cartesian equation. In case the Cartesian and parametric represen-
tations are not fully equivalent, determine what part of the curve is repre-
sented by the given equations.
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L.2=2 -3 y=2 -6 2Box =02 —~1,y=2r 4,
3. x =2cos28, y =2 cos 28, 4 x = logw 10k, ¥ = logy 12,
. x =109 =2-10-% -2 g x ='s;ec3¢>,y =2 tan® 3.
7- x = asin 2¢, ¥ = ¢ cos 2. 8. x = 45sin¢,y =3 cos ¢.
9. x =siné, ¥y = cos 20, 10, x =2 cos 20, ¥ = cos &.
L x=p8y=1-—1 12, x =1+2,y =21,
13. x = L sin2aq, v = sin® o 14, x = cost o, ¥ = sin 2a.
15. x =z sec ¢, ¥y = btan ¢. I6. x =agcola, ¥y =g CsCa A
17, x =sin ¢ + cos ¢, ¥ = 8in ¢ — cos . Ans. xﬂ+y3:—;\2\
Plot the curve (or part-curve} by points, using the parametric sgquations
(§ 80); obtain the Cartesian equation. N
B x=1+8y =41 Ans, v = (% -;'~1)(x — 5)%,
19. x =1 —fhy =t 48 Ans. 3 (0= D)@ — 2,
20. x =sing +cospy =sing.  wwwAbRalindEy drgih= 1
21, x =sin 8, ¥ = cos 30. Ans, ‘y‘f\ﬁ'(l — #51 — 4277
o & g
Bex=177 ETZJFT*' .",':Mm‘y zii?fz;x+1'
2. x = lit’y_l_l_;z : ,.’:’..“ Ans, 28— 23y +3 = 0.

24. x = gcostd, y = g sint 5. ((31r Ex. 20, p. 94)
26. Find the parametric equatins of the straight line in terms of the

parameter & = L. P yhere {x, ¥) is any point on the line, and
PPy o\,
: (x1, 71} Pz 2 (%2, ¥2) are §we given points on the line. (See §6.)

Ans x = x4 R(xa — ), = ok k(e — yih

26. A circle is drayvn on the major axis Q
of the ellipse %‘-i}-‘f—s =1 as a diameter 3
{Fig. 74); the-ardinate MP of any point P is G
produced tO§ on the circle; the line 0Q is 7] T
drawn, nd with Ox an angle ¢ {called

the ecemt’rsc angle corresponding lo the poinl
P')s ind the parametric equations of the
&Llpae in terms of the eccentric angle.
Ans. x=acos¢ ¥ = bsing. Fic. 74
81. Motion in a plane curve. As an important applica-
tion of parametric representation we cite the following

problem of mechanics.
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<

When all,point moves in a plane curve under the action
.of a given. force * or system of forces, an especially con-
venient way of studying the motion is to express the
Cartesian cobrdinates of the point as functions of the
time ¢. The equations giving x and y in terms of { are
parametric equations of the path; upon elimination of ¢
Y obtained. (Compare the\te-
marks of §§ 78-79.) ~\

Example: Dequ'{hine the
- path of a pojnt, moving ac-
www dbraulibrary . greod \

Vtding tct tl;\e lawst

x =051, *

y=M cos t -+ cos 2L
- Sirice cos 2f = 2 cos* £ — 1,

i
i
i
1
]

[

O/ I xd}?}"e&have
\ Ny =4cost+ 2costi—1
\\ A = 4x + 2% — L
. \Q ~/ This equation in standard
h form (§ 43} is
Pa® (x + 1)? = 30 + 3),

representig’a parabola with vertex at (=1, —3),
openingMipward. When t = 0, x = 1, y = 5. As cos!

rangg's:from 1 to — 1, the point moves (along the parab-

PN fhe “noint” is supposed to be cndowed with mass — a *“material particle.”
\g;n'ther, the argument applies to a body of any size ov shape, provided that, for
esent purposes, the motion of the entire body is completely characterized by
the motion of one of its points. This would be the case, for instance, in com-
puting the range of a projectile, or determining the orbit of a planet.

T W'l_len trigonometric functions of the time { occur, as they do in a great
many important problems, the beginner may be somewhat puzzled by the
interpretation of “time” as an angle, The notation means that the value of
(in seconds) is substituted in the formula and the result interpreted as if the
angle were measured in rediens. Thus in the present instance, when [ =1
(sec.), x = cos I (rad.) = 0.54; when x = 0, cos ¢ = 0, # = }= = 1.57 sec.’

the | Cartesian equation @8,

Q.
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ola) to {(— 1, — 3); it then returns to the stérting point,
and subsequently repeats the same cycle indefinitely.

EXERCISES

A point moves in a plane curve according to the given laws. Find the
Cartesian equation of its path, and {race the motion from time = 0.

t‘\\.

A x =145y =— 28 2 x =~costl,y =— s L

2 x=1v =32+ 61 4 x =82,y =1{— £ &
6. x = acos 3y = ¢sin3 6.x=ac032i,y=bamgt.i3
7. x = 8in f, y = cos 2L 8 x=1—cost, v =coedL’

9. x =sin{ y = sin 26 10. x-—sint—{—costy"}-\siﬁi.
11, x = sin §, ¥ = sin 3. 12. x = cos i, yﬂgs,\St

13. x = sin ¢ 4 cos {, ¥ = cos 2L w Ard = x2{2 — x%).

LTS
14. x = cos 2, ¥ = €os 3¢, And y‘@t? TAF A PF Ry
15, x = sin? -+ cos f, ¥y = % sin 44, Anse %K- 22 — 22 — DA
% :..;
O
&
&
¢\
O
t“s
N
’\Ql
\{;\'{.
O
.\‘;;
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SOLID ANALYTIC GEOMETRY

CHAPTER XIII

N\
2\, A

COORDINATES IN SPACE K

82, Rectangular Carfesian cobrdinates. Tofix the
position of a point in three-dimensional space, il1s obvious
that three magnitudes-1apst he given. Thus to locate a
point in the interior of a room, we may give its height
above the floor and its distances frqg(ifwo adjacent walls.
Usually the simplest and most convenient method of
determining the position of a point in space is by means
of its distances from three mutually perpendicular planes,
as in the example just cited” These distances are the rec-

 tangular Cartesian codydinates of the point; the three planes

are the codrdinate gé@nes, their three lines of intersection
are the codrdinale axes, and their point of intersection 18
the origin. The cobrdinates are denoted by the letters
X Y, % and are written P:(x, y, z), or merely (x, ¥, 2.
The thregaxes are called the x-axis, the y-axis, and the
z-axigythe three planes are the xy-plane (containing the
x- ,aglci‘y-axes), the yz-plane, and the zx-plane.

~Evidently a definite positive sense must be chosen for

“each codrdinate; that is, the cobrdinates are directed seg-

menls, as in plane geometry.

Space is divided by the cobrdinate planes mto eight
compartments, or ocfants. The region in which all three
codrdinates are positive is called the first octant; there will
be no occasion to refer to the others by number.

124
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83. Figures. In the system of drawing adopted in this
book, parallel lines are represented by parallel lines: i.e, if
two lines in space are parallel, they are shown in the figure
by lines that are actually parallel, instead of by lines that
run to a “vanishing point.”

Two of the axes are represented

by perpendicular lines, while the ) ?\:\
third, which of course is supposed ‘o ! N
to be perpendicular to the other gf—A~A 5/
two, is shown by a line drawn in =i
any convenient direction. Theaxes L g“% <

are usually placed as in Fig. 76
(with a different arrangement per-
‘missible, of course, when more convefﬂent) the positive
half of each axis being the part drawn in full. Figures in
the yz-plane, or in a plane pa,rallel to that plane, are -
drawn in their true form and proporhons, but all others
are distorted, due to foreshdrtening in the direction of x.
In Fig. 76, the coordmates of P are OL = QP = x,

W dbkélﬂﬂl[ﬁl@ﬁmg in

2 e » LM = RP = y, MP = 2z.
N 84, Distance between two
PN “/p points. Given any two points
Eﬁ’%f‘\::: -~ d P, 2 (x4, ¥4, 21)s Pa (%2 Y2 22),
AL E . :. we note that, in Fig. 77,
QL’%’, +——r y LM = x, — Xy,
N R NQ = y: — ¥u,
'"\:'"D _‘—_*_E__,ésn__'%*_f] RP, = zo — Z1.
A b ) Since
Mfommmaes Y ¥ PP, -VPR+RPY

i Fie. 77 ~ VSN + N@ + RP,
the length of the segment P.P,is
(1) d ="V {xs—x)?+ (Y2 — y1)? + (2 — 2%
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EXERCISES

1. Plot the points (2,4, 1}, {3, — 1,2), (- 2,2, - 3), (0, 1, — 1),

2. Plot the points (3,2, 2), (— 2,4, 1), 3, ~ 1, — 3), 2230

3. Through the point (2, 3, 4} draw lines intersecting each of the
cobrdinate axes at right angles.

4. In each cobrdinate plane, draw a line through O making an angle\
of 45% with each of the axes, and a perpendicular to this line through ah
arbitrary point in that plane. M

6, Draw a rectangular parallelepiped, or box, with 1ts edgm para]lel
to the axes and having the points (3. 2, 1}, (4, 4, 2} as endgofia’ diagonal.

8. In each codrdinate plane, draw a circle of radius g mth center at 0.

7. In the zx-plane, plot the parahola 22 = 4ax. ,"‘\

8. In thewyplathr plotbthe parapale «f = 4ap, ‘

9., What is the distance of the point (:\: \za from Ox? From Gy?

From 0z? From 07 ..\
~10. Where is a point situated if P\ ’ v/
(@) x =07 () z =07 ™ ) x =3 =0?
@) y=2z=07 (e) x =223 ) x=2y=17
(@) x =a? (k)y—z,~x—0'? (N x=y=2

Find the distances between the; following pairs of points.

=11, (3, — 1, 2), (5, ~.2'; —3). 12. (1,7 —4), (=3, -2 -2).
13. 3 0, — 3), (3¢ - h 4.1, -2, - (%09
16. (2} Prove tlﬁ\\the lines joining (6, — 9, 10), (1,1, — 5), (6, 11, O)

form a right triangle; (&) find is area. Ans. {B) 25\/__
\3.8 (a) Proye that the lines joining (3, 5, 1), (2,3, — 2), 6. 1, — 2)
form a right friangle; (5) find its area. Ans. (b V0.
17. (@) Prove that the lines joining (6, 2, 4), (2,0, — 2), (4, — 2, 10)
form an\isesceles triangle; (5) find its area. Ans. (b) 6v'19.
N 13 (4} Prove that the lines joining (6, — 2, 3}, {1, 3, 2), {0, 2, — 5)
fogm an isosceles triangle; (5) find its area. Ans. (b}

"\ 19. Prove that the points (4,1, 2), 2, 1,1}, 3, 3, — 1), (5, 3, 0) are
\ the vertices of a rectangle.

20. A point is at the distance v/33 from 0x, 2v'7 from Oy, V11 from

0z. Find its codrdinates. Ams. (£V3, £2V2, 45),
21. A moving point is always equidistant from the points {2, 3, 1),
(1, 2, 0}. Find the equation of its locus, Ans. 2x =2y + 22 =9,

22. A point moves always at the distance 3 from (1, — 2, 2). Find
the equation of its locus. Ans. 242 L 22 —2x + 4y — 42 =0,
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86. Direction angles; direction cosines., Given any
directed line X\ passing through the origin, the angles o, 8,
v formed by this line with the positive x-, y-, and z-axes
are called the direction angles of the line, and the cosines
of these angles are the direction cosines of the line. Direc-
tion cosines are denoted by [, m, n: that is,

l=cosao, W = Ccos 8, # = COS$ 7. ol

More generally, if the given line does not pass througit
the origin, its direction angles and direction cosjﬁgs" are
defined as equel to those of the parallel line throughthe origin,

Given the three direction cosines {, m, n of any directed

line A, let P: (x, v, z) be any Mdmu’m?;%%l A
through the origin, and denote the /0,

distance OP by p. Evidently N
x = OP cos o = Ip; ..Z:" A
similarly, ,jf,”:"
= mp, z=ﬂp:~:.‘:...

Thus the codrdinates of(R can be )
found if {, m, » are known, so that -
the line ) is determined. It follows
that the divection of any line is deter- P 78

mined if its diréelion cosines are given. .

If the positive sense on the line be reversed, its du:ectlon
angles are-feplaced by their supplements, and the signs of
the dire¢tibn cosines are changed. Hence ‘Ehe Qirectlon co-
sineg"of an undirected line are ambiguous in sign.

\fn”Fig. 78, we have
x? A y2 4+ 2=
or
» B2p? 4 mip® -+ nip? = p
This gives the very important result:
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The direction cosines of any line satisfy the relation
(L . P+m+nt=1
It should also be peointed out that, given any set of
numbers I, m, » satisfying (1), there will always be a line
having those numbers as direction cosines; in fact, the h'ne,\
in question is the line through (0, 0, 0), (/, m, n).
86. Direction components. If the direction cosmeﬂbf
a line are proportional to three numbers ¢, b, ¢, the actual
values of the cosines must be O3
l=rFka, m=kb, n = kL\‘
where £ is a qv.”faﬁ’ﬁﬂ‘ﬁ'sﬁ‘jﬁé?‘ﬁﬁﬂetermmed Substituting
these vaiues of /, m, and # in (1), § 85;\\ve get
2( 2 2 .—.____H_.__l
k(a+b2+c)-—lork A e
Employing this value of & in the equations above, we find:

If the direction cosines O line are proportional to any
three numbers a, b, ¢, zkezf ‘actual values are

M T ) R —
m:_————————-—
az+\2+c2 a2+b2+cz

c

Qs n=- ——— ..
A\ Va b4 2
of numbers g, b, ¢ proportional to the direction
cosmeg f a line are called direction componenzs for that line.
Fhe ambiguity of sign mentioned in § 85 appears here
~Jtthe fact that we might equally well choose the negative
\.sign before the radical.

87. Radius vector of a point. The directed segment OP
from the origin to the point P : (x, ¥, z) is called the mdzus
veclor of P; its length is

(D P =V P2k
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By § 85, the codrdinates of the point in terms of the
radius vector and its direction cosines are
(2) x = lp, ¥ = mp, Z = np.
Hence the direction cosines of the radius vector of a poini
are proporiional io the codrdinates of the point.

88. Direction cosines of the line through two points.
Let d be the distance between the points P : (x:, yg 1),
P, : {xs, ¥, 25). Then the direc- 2
tion cosines of the line P, P, are

lzple?Cg—_-zﬁ

N

d da ‘M
._PlM_yQ_‘yl 'lny
m = ‘e rd
n_PIN__ZZ__Zl. N
- d - d ’:‘" oo
Henee: o0 e F1G. 79

The direciion cosines of thé iéﬁe joining the points (x1, ¥1, z1)
and (%, ¥2, 22) are pmpaftional 10 X3 — X1, Yo Yu 22 — 2.

%\ EXERCISES

(2 A line has ghe.direction cosines I = 5, m = § What angle does

it make with Oz2\" Afzs. 30°.
2. A line fias direction components 3, 4, 5. What angle does it m:;)e
with 022 \ ()~ _ Ans. 45°.

quvat'h\ following lines.
2 .’i‘hrough 0, with direction components 31,2,
"\, Through (3, 5, 1), with direction compopents 2, 3, — 1. o
\ ' §. For each of the following points, find the length and dzrec{f;lon
cosines of the radius vector: (@) {2, 3. 3); (0 (— 3,5, —2n ) &, 1; ).b
8. Where must a point lie if its radius vector has (@) [ =07 &)
lem=0? OI=3 Dl=1 @i=n = V2P

7. A point is at the distance 5 from 0, and its radius vector makes

an angle of 60° with Oy and 45° with 0z, Find its cobrdinates.
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8. A point is at the distance 3 from 0, and its radius vector has

! =1, m =% Find its cobrdinates, Ans. (1, & + 3vD.

@ A point is at the distance 2v'5 from Oy, 8 from 0, and its radius
vector makes an angle 3 with Ox. Find its codrdinates.

10. A point is at the distance 2v'3 from 0z, ¢ from 0, and its radius

vector has I = §. Find its cotrdinates. Ans. (3, £V3, + 2 A~
11. A point is at the distance 4 from the yz-plane, and its radius vectog® .
hasm = &, n = V6. Find the point. Ans. (4, 12, 4V%6).
14, A point is at distance 5 from 0, 4 from the yz-plane, and/ts radius
vector has # = . Find the point. Anms. (4 2V, 1)
13. A point is dlstant 1 from the yz-plane, 2 from the i:f plane and its
radius vector has # = . Find the point. Ads (1,2, 1V10).
14, A pomt is d 10 irom Ox, and its radms ‘vector has direc-
tion componertts E‘f‘f a"ﬁ%ﬁaﬂ% -PEin \Azz_s. {£6, +4, +12).

1B. A point is at the distance ¥5 from the'é%x’is. 1 from the xy-plare,
and its radius vector makes an angle 1= witjrb:a:. Find its cobrdinates.

16. A point is at the distance V2 frofn\0z, V'3 from O, and its radius
vector makes an angle of 45° with 0z, X ind its cotrdinates.

17. A point is at the distance 2V 0 from Oz, 2v'7 from Oy, and it
radius vector has / = §. Find thepoint. Ans. (2. £ 6, & 2VE).

18. Find the direction gosifies of the sides of the triangle having the
vertices (4, 1, — 2), (8, 0, 4%, ¢~ 2,3, — 4).

19. Prove that the goints (6, 1, — 3), (0, — 2,3), (10,3, — 7) hie in
a straight line. O

20. Prove that the pomts 1L, -1.,3,3201,(-3, —7,Dlieina
straight line. « ¢/

21. Prov}thatthepomts (3,3,3,0,2, —1), 4, 1,1), (6,2, 5) are
the vertices of a parallelogram.

89( ﬁ’ro;ectlons. The projection of a point P npon any
Im?e is defined as the foot of the perpendicular from P to

mthat line. The projection of a line segment PP, upon any
line is the segment joining the projections of the endpomts
P;, P; upon that line.

The projection of a broken line upon any line is the sum
of the projections of the segments forming the broken line.
The projection of a broken line PPy - - - P, upon any line 1s
equal to the projection of the closing line PP, upon that line.
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Thus, in Fig. 80,
LiL: + L.Ls

+ L3L4 = L1L4.
It should be noted
that the segments
composing the
broken line need
not all lie in the

same plane.
90. Angle be-
tween two lines. Fic. 80

To find the angle ¢ between any twﬁﬂé&%}ﬂi@mm@&ct-
ing at the origin, let us denote the dlrecﬁcm cosines of Ay
by &1, w1, 71, those of e by s, 14, 22, ang’ choose on A any

. As point P s\(x, ¥, 2) with radius
\ vectox;p; “Then
1 T\
0" p js"'"" "y OL =x = Ilp,
Q—.’ L = LM = y = mup,
} Yy \
e MP = z = tap.
L \\ Now the projection of the
y M“‘ broken line OLMP on X, equals
Fi6. 81 (' the projection of OFP on As?

oP cos’Q_ OL - I, + LM - ms + MP - n,,
or, by th&é})ove expressions for OL, LM, MP,

) p COS¢ Liply + mipms + Haphle,
(1)\ cos ¢ = Lz + mums + .

If the two lines have direction components &, b, €1 and
as, by, ¢, the direction cosines may be found by § 86.
Substituting in formula (1), we find
aqas -+ bibs 4 CiC2

@) 08¢ = e Vag + b
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Of course these results apply at once to any two inter-
secting lines. Further, the angle between two non-inter-
secting lines is defined as being equal lo the angle between
two intersecling lines that are respectively parallel to the
given lines. With this convention the formulas give the
angle between any two lines in space. N

Example: Find the angle between the lines jokﬁiéﬁhe
points (3, 1, 2), (4, 0, 4) and (— 2, 4, 4), {0, - 13,

By §88, the direction components of the\lines are
respectively 1, — 1, 2 and 2, — 5, — 1, By(2), we find

WWWd&r&uU‘;bl - 2 — lﬁ':
:E/Eﬁ-\/30 8

o1 Perpendicular lines. IaCformula (1), §90, if

cos¢g =0, theng¢ = 90°, anc}'.We’have the

THEOREM; Two lines kqﬂiﬁg the direction cosines L, My, T
and I, Mms, 1a are perpen@icular if and only if
1 lll?. B -+ it = 0.

CORCLLARY: lf\ivo" lines with direction components &, by,
¢y and as, bs, ‘cg}ne perpendicular if and only if

m

O

(2) .\ P Y PO blbz 4 €12 = 0.
0\
\:"}" EXERCISES
\\ -

o 1. Find the angle between two lines whose direction components are
231, ~2and 1, 1,0, Ans. 45°.
2. Find the angle between two lines whose direction components are
1,2,3and 2,2, — L. Ans. cos ¢ = f7v14.
3. Find the angle between the radius vectors of the points (3, — 4, 5)
and (— 1, — 1, 0). Ans. cos ¢ = -
4. Find the angle between the radius vectors of the points (2, — 2. 2)
and {2, 1, 2). Ans. cos ¢ = §V3.

5. Find the angle between the lines joining the points (3, 1 — 2),
(1, — 2, 4y and {(— 4, 8,0), (5,2, — 2). © Anms, cos ¢ = I
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6. Find the angle between the lines joining the peints (3, I, — 2),
4,0, —4)and (4, — 3, 3), 6, —2,2).

Ans. &
Solve the following by a new method.
7. Ex. 15(g), p. 126. 8. Ex. 16(a), p. 126.
g, Ex. 17(s). p. 126, 10. Ex. 18(«), p. 126.
11. Ex. 19, p. 126, 12. Ex. 21, p. 130. o &N\
13, Prove that the points (1, 3, — 9. @ 2, — 1), G, 4, — 2) forman \
-equilateral triangle. 2 )
14. Solve Ex. 13 by another method. N
| &
. RV
] \\\'\/’
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CHAPTER XIV

THE PLANE
N\

92, The locus of an equation. If x, y, and z are conx
nected by an equation of any form, we may assign values
at pleasure to two of the variables and compute theshird,
thus determining certain sets of values of x, ¥, aﬁd Z satis-
fying the equation. Each of these sets of yalies' may be
considered @%Jh@r%%r%ggrdinates of.a point. The
points whose codrdinates satisfy the  eQuation are not
scattered at random throughout spape;\nstead, they form
a definite surface, called the locusof\the equation:

In space of three dimensions{ the locus of an equation
is a surface * containing thgse points, and only those
points, whose cobrdinates.satisfy the equation.

Examples of the correSpondence between an algebraic
equation and a surfdce in space are furnished by Exs.
21-22, p. 126. Of{course the situation is entirely analo-
gous to the one ﬁt\i’smg in Chap. II1.

93. Equations in one variable. The equation

N x=Fk.
represehfs a plane parallel to the yz-plane at a distance k
frond\it; for that plane contains all those points, and only
those points, whose x-codrdinate is k. An analogous result
{ holds for an equation of the same form in y or in z. Hence:

An equalion of the firsi degree in one variable represents a
plane parallel to the plane of the other two variables; and con-
versely.

* Exceptionally, a surface may reduce to a single fine or a single point, ete.;
or there may be no locus at all. Such forms are unimportant in a first course,

134
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94. Plane sections of a surface ; traces. A plane and a
surface intersect in general in a curve, called the section of
the surface by the plane. Of particular importance are the
sections of a surface by the codrdinate planes; these sec-
tions will be called for brevity the fraces of the surface,

If in the equation of the surface we substitute z = k;
the resulting equation in x and ¥, considered as the equas
tion of a curve in the plane z = k, represents the sectiot
of the surface by that plane. In particular, {0 oblaiz’the
xy-trace, we sef z = 0. Similarly for the other trages

95. Normal form of the equation of acplane. Let
P : (x, v, z) be any point of the plm%ﬁgg #—}; }1%% rtl'oot
of the perpendicular from Z N
O upon the plane. Denote
the length of the normal
ON by p and its direction
cosines by I, m, . By (2), &30
§87, the coordinates of AR
are (Ip, mp, np), som{hat
(§88) the direction{ eom-
ponents of NP a;'e\} — ip,
¥ — mp, z — nps Hence
(§91) the lin€s are perpen- /7
dicular if addronly if F1G. 82

Ko 1) + mly — mp) + niz —np) =0,
N Ix + my + nz = Bp + mip -+ w0,

NbY (1), §85,
%; Ix + my +nz =P
This is the normal form of the equation of the plane. Fgr
definiteness, the convention is adopted that p shall be

always positive. . ] i
The proof is easily modified to cover the case il which

Q"
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the plane passes through the origin, and the same equation
is obtained. Hence, we have proved the
THEOREM: The equation of a plane is always of the first
degree.™
96. General form; reduction to normal form. Every,
equation of the first degree can be written in the form
(1) Ax + By + Cz+ D = 0. ~‘
Let us transpose the constant term to the right ‘member

and make it positive (by changing all signsif necessary),
and then divide through by v A% 4 B* 3 &‘5

www.dbpdulibr ary . Org,in B3
2 + P
@) BT BLC VAP T O
C T D

RV B+ G VAPt O
Now the coefficients of z, A antl z are the direction cosines
of a certain line, since the sum of their squares is unity:
hence (2) is the equatwn of a plane in the normal form.
From the fact that ‘this reduction can always be carried
out (since v/ A2¢ B2 1 C* cannot be 0), we deduce the
THEOREM: Fpery equation of the first degree represenis @
plane. &
Furtheﬁ, ~we have the
RI?IQE "To reduce the equation of any plane
Ax+By+Cz+D =20
i’b tke normal form, divide by V' A? + B* + C? and choose
\ ) signs so that the constant is posilive in the right member.

97, Perpendicular line and plane. From the fact that
the coefficients A4, B, C in the general equation of the plane
are proportional to the direction cosines of the normal, we
obtain at once the very important

* Sea the footnote, p. 36.
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TH]E_:OREM: If a line and plane are perpendicular, the
coeﬁifsenfs of x, ¥, z in the equation of the plane may be laken
as direction components of the line, and vice versa.

Example: Write the equation of a plane perpendicular
to the radius vector of the point (3, 1, 2) and passing
through (0, 4, D).

By § 87, the direction components of the radius vecter,
are 3, 1, 2; by the above theorem, these numbers may\Bé
taken as the coefficients of x, ¥, z in the equation of the
plane. The result is P\

ety =14 O
the right member being neoessarilyvth&,w@m _g,rg_@gl by
the left member when the cobrdinates (9, 4, 5) are sub-

stituted (cf. the example of § 27). ¥

98. Equations in two variables, \Consider an eqguation
of first degree from which 2z ig imissing — for definiteness
take the equation R N R
L x+2y =4 )
The xy-trace of this ,s'fj?face is
* the line LM. Let\Q be any
point of that line) and P any
point verticalfy;above or below
Q. Since the cobrdinates of @
satisfy (1);-and the codrdinates
of P ~é1ie the same as those of
0 éxeept for a different z, which .
Sehot involved, it follows that FiG. )
P, and hence the entire vertical line through @, lies M jche
locus. Since @ is any point of LM, the locus con51_sts
of all straight lines perpendicular to the xy-plane through
points of the line LM, and is therefore a plané per-
pendicular to the xy-plane.
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Evidently a similar result holds for any equation of
first degree in ‘which x, y, or 2 is missing. Hence the

THEOREM: An equation of the firsl degree in two variables
represents a plane perpendicular to the plane of those wo
variables; and conversely. ~

EXERCISES O\

AN

For the given plane, find the intercepts on the axes; write the equations
of the traces and draw the traces; reduce the equation to tHelgormal form
and read off the direction cosines of the normal and the i\jistance from the

origin, P\
Loxt S%iﬁx%%dﬁrghlibral'y_org%'n:ax + 33,’ oz =15
3.x4y—22=4 4. 2z sy 2 = 2
B.x—3y+4z =0 6.~2%¥y—22=0.
T.x 42z =3 A8N\2y 4+ 3z = 24.

_Find the equations of the fallowﬁ.ng’plahes.
" 9. At a distance 3 from @Xwith the normal having direction com-
ponents 2, — 1, — 2. N Ans. 2x —y— 2z =% 0.

~

~10. Through 3 1, ,—;"1). perpendicular to the radius vector of that
point. AN Ans, 3x + vy —z =11
11. Through (K\'?’; 1, — 3) perpendicular to the radius vector of that
point. \ Ans. 22 —y +32+ 14 =0,

. 12, Withy \1:ﬁe point {(— 2, 4, 2) as the foot of the normal from 0.
13. ’I,‘Q'gugh (— 3, 1, 4) perpendicular to the radius vector of the point
Q. - 2.2, . Ans. x — 2y + 2z = 3.

%&.'Through (©, 1, 0) perpendicular to the line joining (2, — 3, 1),
(314, 0). Ans, x + 7y —z2="T.

N \" 15, Perpendicular to the radius vecter of (1, 3, — 2) and passing at a

\”\} wdistance 2 from the origin. Ans. % + 3y — 22 =+ 2V14.
) 16, Perpendicular to the radius vector of (3, — 2, 2) and passing at a
distance 3 from the origin. Ans. 8x — 2y + 22 =4 3V17

1. The base of an isosceles triangle joins the points (3, 1, —2),
(— 1,3, 0). Find the locus of the third vertex by §97.

18. Solve Ex. 17 by another method (§ 84).

19, One side of a right triangle joins the points (1, 5, — 1), (— 2, 3,0},
with the right angle at the latter point. Find the locus of the third vertex.
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20. Derive the normal form from the fact that, in Fig. 82, the pro-
jection of the broken line OLMPN upon the normal must equal ON.

21. Derive the normal form by applying the Theorem of Pythagoras
to the triangle ONP. Does the derivation hold in all cases?

23. By reducing the equations to the normal form, show that:
If the equations of two planes differ only ir the constant term, the planes

are parallel; conversely, if two planes are parallel, their equations can be madd N
to differ only in the constant term.

N

Using the theorem of Ex. 22, find the equation of the plane. 3 D
28. Through (— 2. 3, 4) parallel to the plane 25 — ¥ — 22=6.

24. Through (3, 4, — 2) parallel to the plane x — ¥ + 3{5 =

25, Through (5, 0, 2) parallel to the plane z = 21 35/

26. Through {1, 5, — 2) paralle! to the plane ¥ =38% + 4z + 3.

97. Parallel to the plane 6x 4+ 3y — 2a/ %} %i@lhdf}l&%%g{ from

Il
0; (b) at the distance 3 from 0. Ans'{e) 6x + 3y~ 7.

98. Parallel to the plane x — 4y — 82 $27 = Oand (@) 3 units farther
from the origin; (b) at the distance 1 from the given plane; (¢} 2 units nearer

the origin. A\ Aus. (x—dy -8 =% 9,
29. Parallel to the plane x — A= 2 -+ 5 = 0 and passing at the dis-
tance 2v3 from (1, 2, — 2). '\ Ans. x —y —z2=1=%86.

30. Paxallel to the plane-2x — 3y — 52 + 1 = 0 and passing at the
distance 3 from {(— 1, 3, L

31. Parallel to th f'{ia{fe 2 4+ 2y 4+2=0 and passing (&) hglf as [ar
from (1, 3, — 2}; (&) ;\mits arther from (1, 3. — 2); () at a distance 3
from (1, 3, — 2} 4\ Ans. (B) 2x+2y+z=6-_.‘:12.

32, Paralled fo' the plane 2x — 6y + 92 = 0 and (a) twice as far from
{5,1,2); (a‘g)'l\;ﬁlit farther from (5, 1,2} (e ata distance 3 from (5, 1, 2)-
Find | : ~<\iist.ance between the given planes.
3802 —y +32+5=0 2% —y+32+2=0
B s-y-e=b G- —2=5
Vo 86. x4 3y + 32 =4 3y + 9y +92+8=0
36.2c — 5y +2+1=0, 2% — 5y 4-2=23
a7. Two faces of a cube lie in the planes x -+ oy -2z —3 = 0,
% +6y+62+2=0 Find the volume of the cube. . Lo
lanes x4y —2+1 =0, x+y —&g—-1=4
3x _33}5_:12w+tgai tél?e p3x —-2y+z+ 9 -0, x-tdy 4524 23 —: (1},
x4y 4+ 5z =1forma box, and find its volhume. Ans. .
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99, Plane through a given point. If the plane
(1) Ax+ By+Cz+ D=0
is to pass through the point (x1, ¥1, 21), those cobrdinates
must satisfy the equation, and we have ' _

Ax1+By1+Czl+D—0 Q

By subtraction, we find that the equation of any,plgre
through the point (x\, ¥, 2) may be wrillen in the fm
vy AQx — x0) + Bly —y) + Cz — z) 20

100. Plane determined by three points, From the fact
that equation (1), § 99, contains three edSential constants
—— viz. the VitGRORAk e Of the quantities A, B, C, D
to the fourth — we conclude thatcalplane is defermined
by three points, or by any similarset of three conditions.

To find the equation of the;p’la'ne through three points,
the obvious method would bé&'to substitute the codrdinates
of the points in tum in_(L);" $99. The solution may, how-

ever, be expedited by use of (2), §99, as in the following
"~ Example: Find the equation of the plane through the
points (2, 4, 3), (LB D,(—1, —1, —4).

The equatiatyof any plane through (2, 4, 3) is

1) Ax — 2) + Bly—4) + Cz—~3) =0,
Subst:ltu\téthe codrdinates of the other points in (1) :
A\\ —~A—-B-2C=0,

— 34 -56B—-7C =10,
\ SolvmgforAand C in terms of B, we find
A = 3B, C=—2R.

By substitution in (1) the equation of the plane is found
to be :
3B(x —2)+ By —4) — 2Bz —3) =0,

3x+y—2:=4.

or
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101, Perpendicular planes. Two planes
Ax + By + Ciz+ D, =0,
A2x+Bzy+sz+Dz=0
are perpendicular if their normals are perpendicular to
each other. The direction cosines of the normals are pro-
portional to Ay, By, Ci and A,, B., C, respectively. Apply-
ing the condition of perpendicularity (Corollary, § 9L,
to these two lines, we obtain the following 'S\

THEOREM: Two planes _
Awx + By + Cz + D, =0,

s W

4 ':
< 3

R
Azx+Bzy+sz+Dg=0 \¥;
are perpendicular if vrww.dbraghiBrary org.in

M A A, + B.B, + C:Ca 05
and conversely. X O

Example: Find the equatiou;t(;f" a plane through the
points (1, 1, 2), (2, 4, 3), and, perpendicular to the plane
2) x — 3y =%z + 5 =0

The equation of any @%ne through (1, 1, 2) is
3 Ax- D By-D+Ce—2=0
Substituting the @oordinates (2, 4, 3) in 3), we get
(4) ',\.;'\'* A+3B+C=0. _
Condition () applied to the planes (2) and (3) gives
G A-3B+17C=0.
F{o‘m (4) and (5) we find

A=—4C, B = C,

whence the equation of the plane is

—4C(x-—1)+C(y-l)+C(z——2)=0,
ot
4x——y—z=1.
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EXERCISES

Find the equation of the plane through the given points.
1. 2,3 —3),01,1, =2, (-1 1, EAR Ans. 3x —y 42 = 0._
2. (2,2,2), (3,1, 1), (6, — 4, — 6). Ans. x4+ 2y —z2=4
2 (3,3 0,(—32 —1),(843). Ans. 4x -2y — 13z = 5. )
4. (~1,1, —5),3 ~15),(-2730. Ans 5x+5y—z=5 N\
Find the equations of the following planes. Ko b
6. Through the points (1,2,3), (3,2, — 1), perpendlcula.rtotheplane
3x + 2y 62+ 4 =0 Ans. 2:6-69'—}—2-}-7 0.
6. Through the points (0,2, 3}, (5, — 1, 4), perpendlcular toithe plane
x+2y+3=0 Ans. 2x-y\-—\I3z+4l—.

7. Thm%b\?}fb?‘gmtg,(afy 01) .2,2), perghadicutar to the plane

x 2y — bz Aps; Tx — 6y —z2="1.
8. Through (4, 1, 0), perpendicular to theplanes 2x — y — 4z =6,
x4+y+2z =3 A\ Ans. 2x — 8y + 32 = 0.
9. Through (1, 1, 2), perpendicular to the planes 2x — 2y — 4z =3,
x4y + 62 =4, o\ Ans, x + 3y —z =2
10. Perpendicular to the planes W= 3x 2, x+5y+ 3 = 0, and
passing at a distance 6 from they ORgin. Ans, x 4+ y — 22 =16
11. Perpendicular to the, p]anes z=4y — % Sx 44y +z=2, and
passing at a distance 1 frorr¥he origin. Ans. 4x —y -8 =+ %

12. Perpendicular tof the planes 2x — y +z = 1, 3x +y = 6z, and
pasmngatadlstanceZ\(mm (1,2, —1). Ans. x-+3y}2=6 +2\/11

18. Prove tha{ the equation

N AX x y z 4
'\.. x1 th & 1 =0
"\l ’ Xy Y2 Ze 1
% Xy ¥ za 1
represents’ the plane determined by the points {(x1, 3, &), (b2 ¥ AR

(xa\y;, 25},
714, In Ex. 13, what happens if the minors of all the elements in the
\ﬁrst row are 07 Explain geometrically.

15. Use the formula of Ex. 13 to solve Exs. 1-4.

18. Find the equation of the plane whose intercepts on the x-, ¥~ and
z-axes are respectively a, b, ¢ (the infercept form).
Ans. E4 ¥+ 2=1
¢ b ¢

17. Prove the theorem of § 98 by a new method (§ 101).



CHAPTER XV

THE STRAIGHT LINE

102. Representation of a curve in space. Two surs
faces intersect in general in a curve. If the equatigﬁs\
of the two surfaces be considered as simultaneous, their
lTocus consists of all points lying on bolk surfacesd Fence:

The locus of two simultaneous equations ista curve,
viz. the curve of intersection of the smgfac?i represented

. W Al Mrary . org.1n
by the two equations separately. Y,

103. The straight line. Two equat: s of first degree
represent, of course, two planes.:iW’hen considered as
simultaneous, the equations represent all points common
to the two planes. From the fict that two planes (f not
parallel) intersect in a straight line, we deduce the fol-
lowing Q .

THEOREM: The l%t‘\fhs" of two simulianeous equations of
the first degree is @3t aight line. ' ‘

Thus the gexeral form of the equations of a straight
line is AN

AU rAx + By + Ciz+ D=0,
o A0

A2x+Bgy+sz+Dz=0- .

Sined through any line an infinite number of planes may

Se\passed, it is obvious that a straight line may be repre-

ted by two simultaneous equations in an infinite num-

ber of ways — viz. by the equations of any two planes

through the line. Of these various equations there ar¢

usually one or two pairs especially simple and convenient
(see §§ 105, 106).

143
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104. Planes through a given line. Let the equations of
a straight line be denoted by
@))] u =0, v=0
where » and ¢ represent any expressions of the first degree
in x, », and z. Then the equation \

N

2 u+ ko = 0, O

where % is a constant, is an equation of the first)degree
and thus represents a plane; further, since (2)'is satisfied
whenever both the equations (1) are satisfied, the plane
(2) contains all points of the line (1). (C£{$37.) Hence the

THEOREM: If RN
www,dbraulwl‘g:ﬂ?rg.iny i0\

are the equations of any line, the’eguation
3) u + kuA= 0,
where k is constant, represeifls a plane through the given line.

Any two equations efthe form (3) may of course be
used to represent thg"h'ne, instead of the original pair.

105. Projecting planes. The planes through a line per-
pendicular to the'codrdinate planes are called the project-
ing planes, 2t their traces are the projections, of the line
on the codrdinate planes. It is often convenient, particu-
larly in'making a sketch, to represent a line by the equa-
tiong'ef two of its projecting planes. o

~Xfin (3), § 104, we choose £ so that the term in x drops

£\

~eut, which amounts merely to eliminating x between the

equations of the line, the resulting equation represents a
plane through the given line perpendicular to the yz-plane
(§98). In this way we establish the

RULE: To obtain the Yz-projecting plane of a line, elimi-
nate x between the equations of the line; stmilarly for the
other profecting planes. :
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Example: Draw the line 2
4x + 4y + 3z = 14, N
x — 2y 4 3z = 2,
Eliminating 2z and ¥ in
turn, we find the xy- and
zx-projecting planes:
x4+ 23’ = 4’ . T :"‘
2x + 3z = 6. ' N,
The xy-traces of these planes _ Oy
are the lines L&, MP,; the )
yz-traces are LP, NP, M/ —p LV
The pOiﬂtS Py, P, are the ¢ \é;\j\fw.dbl‘aulil;rasl‘y,org,jn
xy- and yz-piercing poinis of % >
the given line.

Iy
s .

6. 84
O

EXERCISES ()

Find the equations of the following planés:
1. Through the line x + y = 2, 2854 and the point (2, 4, 0). Draw
the figure. N Ans. x +y +2 =6,
2. Through the line x + 22 =2, y =2 and the point (4, 1, 0.
Draw the figure. PAN Ans. x + 2y + 2z = 6.
3. Through the 1i;g\3x’+y e z=3 x+2y+az+4=0 and
perpendicular to the plane » — 2y —z =5  Ans. 23x + 11y +-z = 13.
4. Through theline’x — ¥ = 3, ¥ — 27 = 4 and perpendicular to the
plane 3x — 5y + 62 =2, Ans. 17x — 9y — 162 = 83.
B. Showthé‘é.tﬁeline2x +y—3z2=423 — 3 + 2z = 2 lies in the
plane dx + 79{-319z = 16.
6. Show that the line2x + 3y — 2 = 4, 3% — y — 2z = 1 lies in the
plane x, 45y — 2z + 13 = 0.
Firg’d;}lie projécting planes of the following lines, and draw the lines.
N T x+y+3=3 2r4+y+4z=4
B Ar+y+z=4 3x + 3y 4+ 2z =6
9. dx +3y +2z =18, 2x — 3y + 2z = 0.
10. &x +y + 32 =9, 5x + ¥ + 6z = 15
il.2x 4y —2=3 g +2y —z =56
12, 3x — 2y —2 =0, x—y+2z=0
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106. Symmetric form. The equations of the line through -
(21, 31, 21) having direction components ¢, b, ¢ may be
found as follows. If (x, 3, 2) is any point of the line, the
direction cosines are also proportional to x — x;, ¥ — vy,
z — z;. Since two sets of numbers proportional to the
same third set are proportional to each other, we have

X=X _Y—4% _Z2— 4 O
@ a B ¢ O
Formula (1) is called the symmetric form, forflost pur-
poses it is more convenient than any other.{ ¢

Example: Write the equations of the~line joining the
pOlIltS( \Aﬁd'f}l;f'agfbral §’or 1]1) \‘

By § 88, the direction componen(s are 1, 6, 2; hence
the equations of the line are X\

: x—2 y—3 - z—1
) -

107. Determination of firection cosines ; reduction to
the symmetric form. Toreduce the equations of a line to
the symmetric formyg we may proceed, in general, as in the

Example: Redu\ce the equations :

4x+4_y~+32:—14 x—2y-+3z=2
to the symriagtric form (cf. the example of § 105).
Find any’two of the projecting planes: for instance,
A x4 2%y-4  2+3-6
These equations contain one variable in common; solpe for
{fza? variable and equate values:
X=—24 4= L?’;_JLG.

Divide through by such a number as to reduce the coefficient
of each variable to unity — in this case by — 6:

X _¥-2_z-—-2

~ 6 3. 4
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If the h'ne is parallel to a cobrdinate plane, the abov
process fails, since the equations of the proje(;ting planez
will not contain one variable in common. In that case
we may find two points of the line and then employ § 88

EXERCISES
Write the eguations of the line through the given points. O\
1. (4,2, 1), (— 1,3, 6). 2. 3, — L4, @4 —2, - 3), A\
3. (8, —5,6), © 1, 0. 4.0, — 5, —2),(1,33..\
Reduce the following equations to the symmetric form. R
6. x+2y +4z24+1=0, x—by—5z=2 '»'j\g'

G.x+y—2=0 2x—-2y-—z=2

7. Show that the lines x — 2 bk - sl
f—y—2=04x—-6yt+z= ;-aj;e pa,r:ilel\.m{m'l?ﬁaﬂﬂﬂ a&'ﬁm‘élﬁmd :

8. Show that the lines 7x + 5y — 7z =“3’,;x x+ 3y —2z=0 and
2x+y—-z=1,x—y+33+3=03reparilllel. '
9. Find the equation of the plane det&mined by the parallel lines of
Ex. 7. N Ans. x — 5y + 2z = 2.

10. Find the equation of the plafie \determined by the parallel lines of
Ex. 8. N Ans. 20x + 7y +324+3 =10

11. Find the point of intersection of the intersecting lines ¥ = 2x,

2x +y+ 2 = 2and 2z 5(+’2z+2 =0, 3x+y+z=4
12, Find the point ot}tersection of the intersecting lines x + ¥ =5
2r oy — 3z = landgp+ 2y +2= 3, 3¢ -3y —2z=2
13. Find the eqiﬁtion of the plane determined by the lines of Ex. il
22 Ans. 18x 4+ y -+ 10z = 10.

14. Find\éae equation of the plane through the fines of Bx. 17
O Ans, 12x + 9y — 132 = 1.

15.\~li'f~l’id the distance from the point (3, _0, 2) to f:he line
2x Mj!..-’* z=1>x=y. (Passa plane through the point and th? line, then
a e through the line perpendicular to the plane just determm}:d.) i

ns. .

16. Find the distance from the point (2, 5_', 1} to the.line y4z= é.
2t —3y —2z4+4=0 {Note the suggestion in Ex. 15.} Ans. 3.



CHAPTER XVI
SURFACES

N

108. Symmetry. It follows from §§92, 95 thatvan
equation not of the first degree represents in general a
curved surface of some kind. We begin our study of sur-
faces with a brief discussion of symmetry. ™

Two points P,, P, are said to be sym fric with respect
o a plane if the plane is perpendicular $o’the line PP, at
its midpoint dbrititifaR, dsghe image, O reflection, of Py in
that plane. A geometric figure ig@ymmetric with respect
to a plane if corresponding to every point P, of the figure
the image P, also belongs to the figure.

The most important type-of symmetry of space figures
is that with respect to, the codrdinate planes. We have
at once the "

THEOREM: A su?face is symmetric with respect o the
yz-plane if x caQ\be replaced by — x wilhoul changing the
equation; and\conversely. Similarly for symmetry with
respect to the zx- and xy-planes.

109. Sﬁrfaces of revolution. A surface of revolution is a
surfa‘ﬁlg that can be generated by rotating a curve about a
stral t line. The straight line is called the axss of revolu-
:twn, and the revolved curve is the generating curve, or
\ ygeneralor. The sections by planes through the axis are
meridians; those by planes perpendicular to the axis
are right sections, or parallels. EV1dent1y the right sections
are circles with centers in the axis of revolution.
The more important surfaces of revolution are as
follows.
148
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Surface
Sphere
Prolate spheroid
Oblate spheroid
"Hyperboloid of revolu-
tion of one sheet
Hyperboloid of revolu-
tion of two sheels
Paraboloid of revolution
Circular cylinder

Cireular cone

Torus

SURFACES OF REVOLUTION

149

Generaled by the rolation of

A circle about a diameter.

An ellipse about its major axis,

An ellipse about its minor axis,

A hyperbola about its conjugate
axis.

A hyperbola about its transverée)
axis. O

A parahbola about its axigsy,

A straight line about dlihe par-
allel to it. %)

A Strakgl{%,(lb}}ﬁuﬁii}%%@r;}ﬁﬂe n-
tersecting itObliquely.

A circle ahegt'a line in its plane,
not inteérsecting it.

The spheroids are also call,e{d’ “ellipsoids of revolution.
The equations of all of these Surfaces, with the exception

of the torus, are of the sggoh’d' degree. 2
Example: Sketch thesuriace

x% 4+ y?\é az

The surface ig(symmetric with re-
spect to the ya~and zx-planes (§ 108).
Setting x, /#In turn equal to O, we
ees the parabola 3* = az;
the parabola x? = az; the point-ch:cle
w4 g% 0. Setting z = k (i.e. taking

get as

(a > 0).

Fic. 85

tions parallel to the zy-plane), we
Zi%for k Ii 0, no curve; for & > 0, the circleg x4 ¥ = qk.
This shows that the surface is a paraboloid of revolulion
generated by rotating either of the above parabolas abgwilt
0z. On account of the symmetry, we need to make only

a first-octant sketch.
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110. The sphere. A sphereis the locusof a moving point
that remains at a constant distance, the radius, from a
fixed point, the cenier.

By (1), § 84, the equation of a sphere of radius e with
center at the point (%, %, [} is
W) G—hrt@-R G- =

Every equation of the form
@ Ae+Ap -+ A2+ Gx+Hy+L+K=s®
can be reduced to the form (1) by completing, thelsquares
in x, y, and z; hence every equation of the fomz\(ﬂ) reprresents

a sphere (€XCER; 1_aufdnl;,za,ra (pomt or no logus— cf. § 34).

K7
EXERCISES/\N

By a study of the sections, show that,tﬁe Following equations represent
surfaces of revolution, locate the axis,%and determine a generating curve.
Classify the surfaces and draw the ﬁgu:es

Lagtp@r+2=4 8 2224422 =4

a
2\

3. %% 137 = dgt L 4, ¥8 + 2 = a2
B, xt L2t = 4y, {'"x\ 6.2 Lyt — 2 =0
7. 4x2+4yﬂ=a<\-“ 8.3 — 32 422 =0,

9. 4x* — 9y PIF 4 36 = 0.
11, dx? — 222 +4 = 0.
13, xt 9% 2 2ax
16, 2602 & 25yt 4 22 = 25.
Wt 2 4 2 = 4.

10. 497 + 422 = 1.

12, 27 —pt — 2 = 1.
14, 22 4 5% + 022 = 36,
16. 52 — 997 — 92 = 0.
18, ¥+ 22 — 2y = 0.

Fmd, the center and radius of each of the following spheres.
‘19 by L2 —dy 2y 4+62—2=0.
\ ) 20, fy2 4+ 2+ 3% —y— 2z =2

21 224 2 = dx — 20, 22, 4xt L 42 422 = 2,

Write the equations of the following spheres.
23. Of radius 2 with center at (1, — 3, — 5).
24. With center at O tangent to the plane 9x — 2y + 62 + 11 = 0.
26. With center at (2, 1, — 3) tangent to the plane x +y — 2z = 3.
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26. With center at (0, 3, — 5) tangent to the plane 2¢ ~ 3y — 2z = 3.

27. Prove that a sphere is determined by four points.

28. Find the equation of the sphere through the points (G, 0, 0),
{(-1,0,0,(0,4,0), (1,2 —1) Ans. 2?4+ 4 2+4+x—4y —z=0.

111. Quadric surfaces. A surface whose equation is of
the second degree is called a quadric surface. Next to the
plane, the quadrics form by far the most important class‘\
of surfaces.

The quadrics proper are of nine species: the elhpsofd {of
which the sphere is a special case), the hyperbolo‘ids (two
species), the paraboloids (two species), the qu&dnc cylin-
der (three species), and the gquadric cong; In addition
there are the degenerate formywﬁrﬁ}dg&ﬂsa‘wmﬂmse of
Chap. VI —two parallel, coincident,” or intersecting
planes, a single straight line, or a pomt

112. The elhpsmd The surfaf:e
(1) az + R Jr'_ 2

is called an ellipsoid. Thls surface is symmetric with re-
spect to all three ¢ rdmate planes and lies entirely within
thelimits—aé.(«féa, —bfyfb —cEz=0.

__l..-71._—._.__ —

!/_L ___________ i 3 y
d ]

—pm——————

Fic. 86

The segments of length 2a, 2b, 2¢ cut off on the codrdinate

axes are the axes of the elhpsmd the point @ is the center.

Q!
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113. The hyperboloid of one sheet. The equation

1 S

3 @y e

represents a kyperboloid of one sheet (Fig. 87). The sec-
tions parallel to the yz- and zx-planes are hyperbolas;
parallel to the xy-plane, ellipses. The intercepts on Ox'ate
+ a;on Oy, + b; on Oz, imaginary. The surface i§ a eon-
nected, open surface extending indefinitely in both direc-
tions along the z-axis. RO

:..\‘0
.:l\:\KA,"The hyperholoid of two sheets. The equation

.‘ 3 x2 2 z2
ok P T A
represents a hyperboloid of two sheels (Fig. 88). A study

of the sections shows that the surface consists of two dis-
con'nected sheets, one in the region x = @, the other in the
region x = — @, each opening out larger along Ox as x
Increases numerically, Note the unconventional arrange-
ment of the axes in Fig. 88,
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116. The elliptic paraboleid. The locus of the equation
x2 oy oz
M EtwTe
is called an elliptic paraboloid.
From equation (1) we find
that the elliptic paraboloid has
two planes of symmetry; it also
has one line of symmeiry, called
the axis of the surface. The
axis intersects the surface in a
single point, called the wzerfex.
The surface lies entirely on one
side of the xy-plane, and extends ,
to infinity along Oz. ,\
116. The hyperbolic paraboloid: "The surface
2 gtz
& P
is called a hyperbolic paraboloid. The sections y = k are
parabolas opening qgﬂ{ﬂ:d or downward, a_ccm:dmg to the
sign of ¢; sections &% % are parabolas opening in the oppo-
site direction. I'thus appears that the surface is saddle-
shaped,” as shown in Fig. 90.
. .'\n

www_d‘b@tﬂw E;Py.org.in
(¥ Fic 89
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EXERCISES
Classify and sketch the following surfaces.
fed y2 iﬂ = x_’a 2 .z_g = 1.
LE T+ L 2.5 +5+7
IS L R S )
qo*tr-5-t EtTEI Ty N
¥ _ s 2_ 2 _ »_ g,
T 9 2 1 A
7. 3x2 + 32 + 4t = 12, 8. 22 — dyt — 4z = I.. \' N
9 22t 2 —dy =0 10-I2+2}’2—62=Q:s.
11, 2% — 2 42 = 0 12, 22 — y® — 2 ="Q."”‘.
13. x* + 2s% | 622 = 6. 14, 32 — 2% — @Q: 2.
15. 2% 4 228 = y. 16. 422 — 40&)y,
7. 4x +\.\K?/\Kic€ﬁi'aﬁl?brar .org.ilhs' § 42 = 0.
19, 22 + 492 — 422 4+ 9 = 0. 20, x2 L 4zt = 16,
21, 8x 32 4+ 282 =0, 22.4x2 ¥+ 4zt = 0.
23, &7 4 3% + 2 = 2gz. 24.“x3 — 22242 =0

26, Show that the ellipsoid (§ 112)48 a prolate spheroid when the two
shorter semi-axes are equal; an oblate spheroid when the two longer semi-
axes are equal; a sphere when all three semi-axes are equal.

26. When do the surfaces of §§ 113-115 become surfaces of revolution?

27. Which of the sugi:\ces in Exs. 1-24 are surfaces of revolution?

117. Cylindefs A cylinder is the surface described by a
moving line which remains parallel to its original position
and alwaysﬁn’tersects a fixed curve, called the directing
curve. Thus'the cylinder is completely covered by straight
linesydalled generators, all of which are parallel.

Thé section by any plane perpendicular to the genera-
tqrs 1s called a righi section; it is obvious that all right

\‘ \sections, and in fact all parallel plane sections, are identical
curves. If the right sections have centers, the line through
these ceniters is the axis of the cylinder.

118. Equations in two variables : c¢ylinders perpendicu-
lar t9 a cotrdinate plane. The argument employed in
§ 98 in no way depends on the fact that the base-curve is
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a straight line. But if, in Fig. 83, the line LM were
curved, the surface LMRS would be, not plane, but
cylindrical. Thus the argument of that section serves
to establish the very important

THEOREM: An equation in fwo wvariables represents o
cylinder whose generators are perpendicular fo the plane of
the two variables and whose directing curve s the curpb,
represented by the given equation in thai plane; andoon-
versely. A\
COROLLARY: A cylinder is a quadric surface z)‘f'.«:md only
if its right section is a conic. \\

The truth of the corollary appears at.bnce from the
fact that, when the generators are herpateat &M co-
ordinate plane, the equation of theceylinder is identical
with the equation (in the cobrdinateplane) of the direct-
ing curve.

A quadric cylinder is called-geptic, parabolic, or hyper-
bolic, according to the natur&of its right section.

119. Cones. A cone j&the surface generated by a mov-
ing line that alway Q’asses through a fixed point, called
the zertex, and intersects a fized directing curve. Thus the
surface is complg‘ée[y covered by straight' lines, or gener-
ators, all passigg through a fixed point. Like the cylinder,
a cone may-or may not be a quadric surface.

120. The elliptic cone. The locus of the equation

PR x? y? EE _
(Q\;u Gt e 0
face evidently has three planes

is a gquadric cone. This sur i
of symmetry, and a center of symmetry, called the veriex.

A study of the sections shows that the surface consists of

two open sheets extending indefinitely along the 2z-axis

(Fig. 91).

N\
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By suitable cotrdinate transformations (analogous to
those of §§55-56), the equation of
every quadric cone can he reduced
to the form (1). Hence there is only
a single species of quadric cone; from
this one surface every kind of conic/™\
can be cut. Since the surface is most
clearly visualized by means, Qf‘“lts
elliptic sections, it is usua]ly called
the elliptic cone. R

The line through the‘ centers of
Abraals tI:he elliptic sectionsuis'ealled the axis

T o the €one, and. -settions by planes
perpend1cular to “the axis are right
seclions. NN

When @\= b, the surface is the

Fic. 91 czrculq:'j Eohe.
EXERCISES
Draw the following cyl:ipdérs.
1. 22 = day. \\ h 2. 28 — 422 = 16.
3. 2* + 57 = 4ay, 4. 2xy = a*.
bz =3t <2p 6. 297 4 22 = 4y,
T ¥ —;{a’ 2y, 8 x5 —2y =2
Draw e:fbilowing cones.
9.4 — Oy 4 3622 = (), 10, 427 — 32 — 22 = Q,
1022 4 52 = 922, 12. 3x% 4 92 — 322 = 0,
(18, 900 — 42 = 922 14, 22 — 3y 4 422 = 0,

Q
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PLANE ANALYTIC GEOMETRY . » N

Abscissa, 2 Curves, 16, 102 O
Angle, between two lines, 11 algebraic, 11%é 111, 118 (N

bisectors, 49 cubic, 102 N

eccentric, 121 higher plane, 102 ¢

of inclination, @ of second degr, EE,”@},\QI
Apolar, 110 2. 1 quar"t{igci:;L 102 v/

symptotes, 80, 102 thrdwpthbinaetbriaoyspB8.in

of equilateral hyperbola, &2, 90 9.\ yeroR

of hyperbola, 80 Degree, 244

parallel to axes, 90, 103 Determuinant, 34, 58
Axis, of cofirdinates, 2, 110 : Directxiz, 63

of ellipse, 74, 75 _of\ellipse, 73

of hyperbola, 80, 82 ot hyperbola, 79

of parabola, 65 . & 'of parahola, 65

of symmetry, 18, 63 % Distance, between point and line, 48

polar, 110 Ve between two points, 4

radical, 61 N Division of line-segment, 6, &

)

Cardioid, 113, 117 L\ Eccentricity, 63 ,
Center, of circle, 51, B2\ Ellipse, 63. 73, 75, 78, 113, 121

of ellipse, 73 o Oud Equations, factorable, 22

of hyperbola, 80"\ incompatible, 23

of symmetry /29" of first degree, 36, 39

radical, 62\ of second degree, 64, 81
Chard, co 1, 62 parametric, 118, 122
Circle, 51,62, 64 simultaneous, 23

in polar codrdinates, 111, 117

Abfough intersection of circles, Focus, 63
59 of ellipse, 73, 75
firough three peints, 56, 58 of hyperbola, 79, 22
Conics, 63, 64 of parabola, 65
degenerate, 64, 68, 77, 85 Four—l_eaved rose, 112, 117
in polar codrdinates, 116, 117 Functions, 38
gpecies of, 63 linear, 39
Coordinates, Cartesian, 2 one-valued, 111
polar, 110 guadratic, 70

157
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Functions (Continued) Point-ellipse, 64, 77
rational, 106 Pole, 110
two-valued, 113 Polynomials, 104
Hyperbola, 63, 79, 82, 84, &5 Quadrants, 2
equilateral, 82, 90 - )
rectangular, 82, 90 Radius vector, 110
Rate of change of linear function\
40

Inclination, 9

Initial line, 110

Intercepts on axes, 18

Intersection of two curves, 23, 24,

N

Refiector, parabolic, 90 ¢
Rotation of axes, 88, 89 .\ ™

\ W

59 Secant, 95 A\
Slope, 9 \ ?
Latus rectum, 63 as rate of chang\e; A1
of ellipse, 74 of a curve; 95
of hyperbola, 79 Straight lingh\36"
of parabola™85*" .dbraulibrary.org.in mtercer?gfpm 42
Lemmiscate, 113, 117 nornmeal/form, 44, 115
Limagon, 113 parall I'to an axis, 32
Lodi, 16, 21, 22, 26, 29 parametric form, 121
in polar codirdinates, 116 A peint-slope form, 32

~ slope-intercept form, 35, 36
Maximum, 70 %y two-point form, 34
Midpoint of a line-segment, 8 ~:'; % Symmetry, 18, 19, 63
Minimum, 70 N

Motion, plane, 121 2 Tangent, 55 _
~\ at a given point, 95, 96, 99
Normal, 96, 98 y '\\..3 common to two circles, 62
. N of given slope, 100, 101 .
Ordinate, 2 O\ Transformation of cobrdinates, 87,
Origin, 2, 110 \ 88, 89, 114
g TFranslation of axes, 87, 89
Parabola, 63\65‘ 66, 68, 70
Faralle] lities 10, 37 Variahle, 2, 39
P 118 Vertex, of ellipse, 73
Perpei'ldlcular lines, 10, 37 of hyperbola, 80
Pomt'czrcle, 52 of parabola, 65
e\ ‘.'

\‘;
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SOLID ANALYTIC GEOMETRY

Angle between two lines, 131 Meridians, 148
Cone, 155 Octants, 124
o 1
ellpLic, Paraholoid, elliptic,
Cotrdinates, Cartesian, 124 hyperbolic, 1;;;;;:; 158
Cur_ve, 1_43 of revolution, 149 2\ ¢
d}rectmg, 164, 155 Parallel planes, 139 4 \,,.\
Cylinder, 154 Parallels, 148 O
circular, 149 Perpendicular line and ;l,z’me',"l36
elliptic, 155 Perpendicular lines, 132, 3
hyperbolic, 155 Perpendicular plangs, {141
parabolic, 155 Piercing-points, 1,45\
Plane, 134, 136\
Direction angles, 127 intercept formy, 142
Direction components, 128 nownad form] iB&ry org.in
Direction cosines, 127, 146 parallel fo’ codrdinate plane, 134
. of a radius vector, 129 petpentlicular to codrdinate plane,
of Tine through two points, 129 . 138
Distance, between two points, 125 N sprojecting, 144
from point to line, 147 «\ Sthrongh a given line, 144
&8" through a given point, 140
Ellipseid, 151 A% through three points, 140, 142
of revolution, 149 Projection, 130, 144 .
Equations, 134 ~&
in two variables, 137, 154 ) Radius vector, 128
of first degree, 136
of second degree, 149, 151 Sphere, 149, 150
simultaneous, 143~ Spheroids, 149
AW Straight line, 143
Generators, 148,154, 155 paralle] to cobrdinate plane, 147
& : gymmetric form, 146
Hyperbolgid+of one sheet, 152 Surface, 134, 138
of revoldtion, 149 of revolution, 148
Hypecholoid of two sheets, 152 quadric, 151
m?[“gevolution, 149 Symmetry, 148
3
Ms, of an equation, 134 Torus, 149

of two equations, 143 Traces, 135
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